797 research outputs found

    Effects of network topology on the OpenAnswer’s Bayesian model of peer assessment

    Get PDF
    The paper investigates if and how the topology of the peer assessment network can affect the performance of the Bayesian model adopted in Ope nAnswer. Performance is evaluated in terms of the comparison of predicted grades with actual teacher’s grades. The global network is built by interconnecting smaller subnetworks, one for each student, where intra subnetwork nodes represent student's characteristics, and peer assessment assignments make up inter subnetwork connections and determine evidence propagation. A possible subset of teacher graded answers is dynamically determined by suitable selec tion and stop rules. The research questions addressed are: RQ1) “does the topology (diameter) of the network negatively influence the precision of predicted grades?”̀ in the affirmative case, RQ2) “are we able to reduce the negative effects of high diameter networks through an appropriate choice of the subset of students to be corrected by the teacher?” We show that RQ1) OpenAnswer is less effective on higher diameter topologies, RQ2) this can be avoided if the subset of corrected students is chosen considering the network topology

    Knowledge Elicitation Methods for Affect Modelling in Education

    Get PDF
    Research on the relationship between affect and cognition in Artificial Intelligence in Education (AIEd) brings an important dimension to our understanding of how learning occurs and how it can be facilitated. Emotions are crucial to learning, but their nature, the conditions under which they occur, and their exact impact on learning for different learners in diverse contexts still needs to be mapped out. The study of affect during learning can be challenging, because emotions are subjective, fleeting phenomena that are often difficult for learners to report accurately and for observers to perceive reliably. Context forms an integral part of learners’ affect and the study thereof. This review provides a synthesis of the current knowledge elicitation methods that are used to aid the study of learners’ affect and to inform the design of intelligent technologies for learning. Advantages and disadvantages of the specific methods are discussed along with their respective potential for enhancing research in this area, and issues related to the interpretation of data that emerges as the result of their use. References to related research are also provided together with illustrative examples of where the individual methods have been used in the past. Therefore, this review is intended as a resource for methodological decision making for those who want to study emotions and their antecedents in AIEd contexts, i.e. where the aim is to inform the design and implementation of an intelligent learning environment or to evaluate its use and educational efficacy

    Giuseppina Strepponi in Paris (with a review by Berlioz)

    Get PDF

    Personalizing explanations of AI-driven hints to users' cognitive abilities: an empirical evaluation

    Full text link
    We investigate personalizing the explanations that an Intelligent Tutoring System generates to justify the hints it provides to students to foster their learning. The personalization targets students with low levels of two traits, Need for Cognition and Conscientiousness, and aims to enhance these students' engagement with the explanations, based on prior findings that these students do not naturally engage with the explanations but they would benefit from them if they do. To evaluate the effectiveness of the personalization, we conducted a user study where we found that our proposed personalization significantly increases our target users' interaction with the hint explanations, their understanding of the hints and their learning. Hence, this work provides valuable insights into effectively personalizing AI-driven explanations for cognitively demanding tasks such as learning

    Effects of Individual Differences in Working Memory on Plan Presentational Choices.

    Get PDF
    This paper addresses research questions that are central to the area of visualization interfaces for decision support: (RQ1) whether individual user differences in working memory should be considered when choosing how to present visualizations; (RQ2) how to present the visualization to support effective decision making and processing; and (RQ3) how to evaluate the effectiveness of presentational choices. These questions are addressed in the context of presenting plans, or sequences of actions, to users. The experiments are conducted in several domains, and the findings are relevant to applications such as semi-autonomous systems in logistics. That is, scenarios that require the attention of humans who are likely to be interrupted, and require good performance but are not time critical. Following a literature review of different types of individual differences in users that have been found to affect the effectiveness of presentational choices, we consider specifically the influence of individuals' working memory (RQ1). The review also considers metrics used to evaluate presentational choices, and types of presentational choices considered. As for presentational choices (RQ2), we consider a number of variants including interactivity, aggregation, layout, and emphasis. Finally, to evaluate the effectiveness of plan presentational choices (RQ3) we adopt a layered-evaluation approach and measure performance in a dual task paradigm, involving both task interleaving and evaluation of situational awareness. This novel methodology for evaluating visualizations is employed in a series of experiments investigating presentational choices for a plan. A key finding is that emphasizing steps (by highlighting borders) can improve effectiveness on a primary task, but only when controlling for individual variation in working memory

    Classification of Alzheimers Disease with Deep Learning on Eye-tracking Data

    Full text link
    Existing research has shown the potential of classifying Alzheimers Disease (AD) from eye-tracking (ET) data with classifiers that rely on task-specific engineered features. In this paper, we investigate whether we can improve on existing results by using a Deep-Learning classifier trained end-to-end on raw ET data. This classifier (VTNet) uses a GRU and a CNN in parallel to leverage both visual (V) and temporal (T) representations of ET data and was previously used to detect user confusion while processing visual displays. A main challenge in applying VTNet to our target AD classification task is that the available ET data sequences are much longer than those used in the previous confusion detection task, pushing the limits of what is manageable by LSTM-based models. We discuss how we address this challenge and show that VTNet outperforms the state-of-the-art approaches in AD classification, providing encouraging evidence on the generality of this model to make predictions from ET data.Comment: ICMI 2023 long pape

    The experimental reconstruction of an Early Neolithic underground oven of Portonovo (Italy)

    Get PDF
    This contribution presents the experimental reconstruction of an underground oven replicated according to the archaeological evidence unearthed from the Early Neolithic site of Portonovo-Fosso Fontanaccia (Ancona-Italy). A domed structure, measuring 190x180 cm diameter at the base and 50 cm in height, was dug in 15 hours, in a sediment compatible with the geological formation that features the archaeological site. The experimental protocol presented in this article aims to reconstruct techniques, timing and tools needed to dig the peculiar underground structures of Portonovo used by Neolithic groups and understand key topics regarding the entire technical process such as energy investment for the community, seasonality and lifespan

    AI in Education needs interpretable machine learning: Lessons from Open Learner Modelling

    Get PDF
    Interpretability of the underlying AI representations is a key raison d'\^{e}tre for Open Learner Modelling (OLM) -- a branch of Intelligent Tutoring Systems (ITS) research. OLMs provide tools for 'opening' up the AI models of learners' cognition and emotions for the purpose of supporting human learning and teaching. Over thirty years of research in ITS (also known as AI in Education) produced important work, which informs about how AI can be used in Education to best effects and, through the OLM research, what are the necessary considerations to make it interpretable and explainable for the benefit of learning. We argue that this work can provide a valuable starting point for a framework of interpretable AI, and as such is of relevance to the application of both knowledge-based and machine learning systems in other high-stakes contexts, beyond education.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Swede
    corecore