36 research outputs found
Core domain mutant Y220C of p53 protein has a key role in copper homeostasis in case of free fatty acids overload
Gradual Exposure to Salinity Improves Tolerance to Salt Stress in Rapeseed (Brassica napus L.)
Soil salinity is considered one of the most severe abiotic stresses in plants; plant acclimation to salinity could be a tool to improve salt tolerance even in a sensitive genotype. In this work we investigated the physiological mechanisms underneath the response to gradual and prolonged exposure to sodium chloride in cultivars of Brassica napus L. Fifteen days old seedlings of the cultivars Dynastie (salt tolerant) and SY Saveo (salt sensitive) were progressively exposed to increasing soil salinity conditions for 60 days. Salt exposed plants of both cultivars showed reductions of biomass, size and number of leaves. However, after 60 days the relative reduction in biomass was lower in sensitive cultivar as compared to tolerant ones. An increase of chlorophylls content was detected in both cultivars; the values of the quantum eciency of PSII photochemistry (FPSII) and those of the electron transport rate (ETR) indicated that the photochemical activity was only partially reduced by NaCl treatments in both cultivars. Ascorbate peroxidase (APX) activity was higher in treated samples with respect to the controls, indicating its activation following salt exposure, and confirming its involvement in salt stress response. A gradual exposure to salt could elicit dierent salt stress responses, thus preserving plant vitality and conferring a certain degree of tolerance, even though the genotype was salt sensitive at the seed germination stage. An improvement of salt tolerance in B. napus could be obtained by acclimation to saline conditions
Dietary phytochemicals and drugs: potential consequences of a common metabolism.
Dietary phytochemicals and prescription drugs are xenobiotics to
human cells and are substrates of the same enzymes and transporters dedicated
to biotransformation, detoxification and elimination. The interactions between
phytochemicals and phase I and II biotransformation enzymes, as well as their
systems of regulation, can often explain their known anticarcinogenic or
antioxidant actions. However, for the same reason the contemporaneous intake
of phytochemicals and drugs may result in the alteration of drug biodisposition
and efficacy. In the present chapter the principal routes of biotransformation are
described, as well as the mechanisms underlying their concerted regulation, and
the biotransformation of the most significant phytochemicals is reported.
Examples of phytochemicals/drugs interaction are illustrated and the importance
of this issue for phytochemical supplementation is pointed out
Gradual Exposure to Salinity Improves Tolerance to Salt Stress in Rapeseed (Brassica napus L.)
Soil salinity is considered one of the most severe abiotic stresses in plants; plant acclimation to salinity could be a tool to improve salt tolerance even in a sensitive genotype. In this work we investigated the physiological mechanisms underneath the response to gradual and prolonged exposure to sodium chloride in cultivars of Brassica napus L. Fifteen days old seedlings of the cultivars Dynastie (salt tolerant) and SY Saveo (salt sensitive) were progressively exposed to increasing soil salinity conditions for 60 days. Salt exposed plants of both cultivars showed reductions of biomass, size and number of leaves. However, after 60 days the relative reduction in biomass was lower in sensitive cultivar as compared to tolerant ones. An increase of chlorophylls content was detected in both cultivars; the values of the quantum efficiency of PSII photochemistry (ΦPSII) and those of the electron transport rate (ETR) indicated that the photochemical activity was only partially reduced by NaCl treatments in both cultivars. Ascorbate peroxidase (APX) activity was higher in treated samples with respect to the controls, indicating its activation following salt exposure, and confirming its involvement in salt stress response. A gradual exposure to salt could elicit different salt stress responses, thus preserving plant vitality and conferring a certain degree of tolerance, even though the genotype was salt sensitive at the seed germination stage. An improvement of salt tolerance in B. napus could be obtained by acclimation to saline conditions.</jats:p
The Cu,Zn superoxide dismutase from Escherichia coli retains monomeric structure at high protein concentration. Evidence for altered subunit interaction in all the bacteriocupreins
Enhancement of Brassica napus Tolerance to High Saline Conditions by Seed Priming
Plants grown in saline soils undergo osmotic and oxidative stresses, affecting growth and photosynthesis and, consequently, the yield. Therefore, the increase in soil salinity is a major threat to crop productivity worldwide. Plant’s tolerance can be ameliorated by applying simple methods that induce them to adopt morphological and physiological adjustments to counteract stress. In this work, we evaluated the effects of seed priming on salt stress response in three cultivars of rapeseed (Brassica napus L.) that had different tolerance levels. Seed chemical priming was performed with 2.5 mM spermine (SPM), 5 mM spermidine (SPD), 40 mM NaCl and 2.5 mM Ca (NO3)2. Primed and not primed seeds were sown on saline and not saline (controls) media, and morphological and physiological parameters were determined. Since SPD treatment was effective in reducing salinity negative effects on growth, membrane integrity and photosynthetic pigments, we selected this priming to further investigate plant salt stress response. The positive effects of this seed treatment on growth and physiological responses were evident when primed plants were compared to not primed ones, grown under the same saline conditions. SPD priming ameliorated the tolerance towards saline stress, in a genotype-independent manner, by increasing photosynthetic pigments, proline amounts and antioxidant responses in all cultivars exposed to salt. These results may open new perspectives for crop productivity in the struggle against soil salinization.</jats:p
Evidence of carbamoylphosphate induced conformational changes upon binding to human ornithine carbamoyltransferase
Amelioration of salt stress tolerance in rapeseed (<i>Brassica napus</i>) cultivars by seed inoculation with <i>Arthrobacter globiformis</i>
Enhancement of Brassica napus Tolerance to High Saline Conditions by Seed Priming
Plants grown in saline soils undergo osmotic and oxidative stresses, affecting growth and photosynthesis and, consequently, the yield. Therefore, the increase in soil salinity is a major threat to crop productivity worldwide. Plant’s tolerance can be ameliorated by applying simple methods that induce them to adopt morphological and physiological adjustments to counteract stress. In this work, we evaluated the effects of seed priming on salt stress response in three cultivars of rapeseed (Brassica napus L.) that had different tolerance levels. Seed chemical priming was performed with 2.5 mM spermine (SPM), 5 mM spermidine (SPD), 40 mM NaCl and 2.5 mM Ca (NO3)2. Primed and not primed seeds were sown on saline and not saline (controls) media, and morphological and physiological parameters were determined. Since SPD treatment was effective in reducing salinity negative effects on growth, membrane integrity and photosynthetic pigments, we selected this priming to further investigate plant salt stress response. The positive effects of this seed treatment on growth and physiological responses were evident when primed plants were compared to not primed ones, grown under the same saline conditions. SPD priming ameliorated the tolerance towards saline stress, in a genotype-independent manner, by increasing photosynthetic pigments, proline amounts and antioxidant responses in all cultivars exposed to salt. These results may open new perspectives for crop productivity in the struggle against soil salinization
