11,456 research outputs found
Construction of Capacity-Achieving Lattice Codes: Polar Lattices
In this paper, we propose a new class of lattices constructed from polar
codes, namely polar lattices, to achieve the capacity \frac{1}{2}\log(1+\SNR)
of the additive white Gaussian-noise (AWGN) channel. Our construction follows
the multilevel approach of Forney \textit{et al.}, where we construct a
capacity-achieving polar code on each level. The component polar codes are
shown to be naturally nested, thereby fulfilling the requirement of the
multilevel lattice construction. We prove that polar lattices are
\emph{AWGN-good}. Furthermore, using the technique of source polarization, we
propose discrete Gaussian shaping over the polar lattice to satisfy the power
constraint. Both the construction and shaping are explicit, and the overall
complexity of encoding and decoding is for any fixed target error
probability.Comment: full version of the paper to appear in IEEE Trans. Communication
Achieving Secrecy Capacity of the Gaussian Wiretap Channel with Polar Lattices
In this work, an explicit wiretap coding scheme based on polar lattices is
proposed to achieve the secrecy capacity of the additive white Gaussian noise
(AWGN) wiretap channel. Firstly, polar lattices are used to construct
secrecy-good lattices for the mod- Gaussian wiretap channel. Then we
propose an explicit shaping scheme to remove this mod- front end and
extend polar lattices to the genuine Gaussian wiretap channel. The shaping
technique is based on the lattice Gaussian distribution, which leads to a
binary asymmetric channel at each level for the multilevel lattice codes. By
employing the asymmetric polar coding technique, we construct an AWGN-good
lattice and a secrecy-good lattice with optimal shaping simultaneously. As a
result, the encoding complexity for the sender and the decoding complexity for
the legitimate receiver are both O(N logN log(logN)). The proposed scheme is
proven to be semantically secure.Comment: Submitted to IEEE Trans. Information Theory, revised. This is the
authors' own version of the pape
Artificial-Noise-Aided Physical Layer Phase Challenge-Response Authentication for Practical OFDM Transmission
Recently, we have developed a PHYsical layer Phase Challenge-Response
Authentication Scheme (PHY-PCRAS) for independent multicarrier transmission. In
this paper, we make a further step by proposing a novel artificial-noise-aided
PHY-PCRAS (ANA-PHY-PCRAS) for practical orthogonal frequency division
multiplexing (OFDM) transmission, where the Tikhonov-distributed artificial
noise is introduced to interfere with the phase-modulated key for resisting
potential key-recovery attacks whenever a static channel between two legitimate
users is unfortunately encountered. Then, we address various practical issues
for ANA-PHY-PCRAS with OFDM transmission, including correlation among
subchannels, imperfect carrier and timing recoveries. Among them, we show that
the effect of sampling offset is very significant and a search procedure in the
frequency domain should be incorporated for verification. With practical OFDM
transmission, the number of uncorrelated subchannels is often not sufficient.
Hence, we employ a time-separated approach for allocating enough subchannels
and a modified ANA-PHY-PCRAS is proposed to alleviate the discontinuity of
channel phase at far-separated time slots. Finally, the key equivocation is
derived for the worst case scenario. We conclude that the enhanced security of
ANA-PHY-PCRAS comes from the uncertainty of both the wireless channel and
introduced artificial noise, compared to the traditional challenge-response
authentication scheme implemented at the upper layer.Comment: 33 pages, 13 figures, submitted for possible publicatio
Chinese international students' experience of studying online in New Zealand.
Reasons distance students seek online study options include pursuing subjects of interest, taking subjects not available to them locally, or gaining a qualification from an institution of specialisation or reputation. However, when students travel to another country for study, what prompts these students to elect to study online? International students in New Zealand have the opportunity to study online through most tertiary institutions. This paper reports on a research project investigating Chinese graduate students' experience of learning online while in New Zealand, and the impact of culture on their learning. This study highlights the benefits of particular aspects of instructional design and makes recommendations to help eEducation educators maximise the benefits of online learning for international students
- …
