1,000 research outputs found
A fast algorithm for backbones
A matching algorithm for the identification of backbones in percolation
problems is introduced. Using this procedure, percolation backbones are studied
in two- to five-dimensional systems containing 1.7x10^7 sites, two orders of
magnitude larger than was previously possible using burning algorithms.Comment: 8 pages, 6 .eps figures. Uses epsfig and ijmpc.sty (included). To
appear in Int. J. Mod. Phys.
Site Percolation and Phase Transitions in Two Dimensions
The properties of the pure-site clusters of spin models, i.e. the clusters
which are obtained by joining nearest-neighbour spins of the same sign, are
here investigated. In the Ising model in two dimensions it is known that such
clusters undergo a percolation transition exactly at the critical point. We
show that this result is valid for a wide class of bidimensional systems
undergoing a continuous magnetization transition. We provide numerical evidence
for discrete as well as for continuous spin models, including SU(N) lattice
gauge theories. The critical percolation exponents do not coincide with the
ones of the thermal transition, but they are the same for models belonging to
the same universality class.Comment: 8 pages, 6 figures, 2 tables. Numerical part developed; figures,
references and comments adde
Relaxation properties in a lattice gas model with asymmetrical particles
We study the relaxation process in a two-dimensional lattice gas model, where
the interactions come from the excluded volume. In this model particles have
three arms with an asymmetrical shape, which results in geometrical frustration
that inhibits full packing. A dynamical crossover is found at the arm
percolation of the particles, from a dynamical behavior characterized by a
single step relaxation above the transition, to a two-step decay below it.
Relaxation functions of the self-part of density fluctuations are well fitted
by a stretched exponential form, with a exponent decreasing when the
temperature is lowered until the percolation transition is reached, and
constant below it. The structural arrest of the model seems to happen only at
the maximum density of the model, where both the inverse diffusivity and the
relaxation time of density fluctuations diverge with a power law. The dynamical
non linear susceptibility, defined as the fluctuations of the self-overlap
autocorrelation, exhibits a peak at some characteristic time, which seems to
diverge at the maximum density as well.Comment: 7 pages and 9 figure
Preasymptotic multiscaling in the phase-ordering dynamics of the kinetic Ising model
The evolution of the structure factor is studied during the phase-ordering
dynamics of the kinetic Ising model with conserved order parameter. A
preasymptotic multiscaling regime is found as in the solution of the
Cahn-Hilliard-Cook equation, revealing that the late stage of phase-ordering is
always approached through a crossover from multiscaling to standard scaling,
independently from the nature of the microscopic dynamics.Comment: 11 pages, 3 figures, to be published in Europhys. Let
Glass transition in granular media
In the framework of schematic hard spheres lattice models for granular media
we investigate the phenomenon of the ``jamming transition''. In particular,
using Edwards' approach, by analytical calculations at a mean field level, we
derive the system phase diagram and show that ``jamming'' corresponds to a
phase transition from a ``fluid'' to a ``glassy'' phase, observed when
crystallization is avoided. Interestingly, the nature of such a ``glassy''
phase turns out to be the same found in mean field models for glass formers.Comment: 7 pages, 4 figure
A graph-theoretic account of logics
A graph-theoretic account of logics is explored based on the general
notion of m-graph (that is, a graph where each edge can have a finite
sequence of nodes as source). Signatures, interpretation structures and
deduction systems are seen as m-graphs. After defining a category freely
generated by a m-graph, formulas and expressions in general can be seen
as morphisms. Moreover, derivations involving rule instantiation are also
morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the approach our results apply to very different
logics encompassing, among others, substructural logics as well as logics
with nondeterministic semantics, and subsume all logics endowed with an
algebraic semantics
Percolation and cluster Monte Carlo dynamics for spin models
A general scheme for devising efficient cluster dynamics proposed in a
previous letter [Phys.Rev.Lett. 72, 1541 (1994)] is extensively discussed. In
particular the strong connection among equilibrium properties of clusters and
dynamic properties as the correlation time for magnetization is emphasized. The
general scheme is applied to a number of frustrated spin model and the results
discussed.Comment: 17 pages LaTeX + 16 figures; will appear in Phys. Rev.
The Inherent Structure Landscape Connection Between Liquids, Granular materials and the Jamming Phase Diagram
We provide a comprehensive picture of the jamming phase diagram by connecting
the athermal, granular ensemble of jammed states and the equilibrium fluid
through the inherent structure paradigm for a system hard discs confined to a
narrow channel. The J-line is shown to be divided into packings that are
thermodynamically accessible from the equilibrium fluid and inaccessible
packings. The J-point is found to occur at the transition between these two
sets of packings and is located at the maximum the inherent structure
distribution. A general thermodynamic argument suggests that the density of the
states at the configurational entropy maximum represents a lower bound on the
J-point density in hard sphere systems. Finally, we find that the granular and
fluid systems only occupy the same set of inherent structures, under the same
thermodynamic conditions, at two points, corresponding to zero and infinite
pressures, where they sample the J-point states and the most dense packing
respectively.Comment: 5 pages, 3 Figure
Scaling and Crossover in the Large-N Model for Growth Kinetics
The dependence of the scaling properties of the structure factor on space
dimensionality, range of interaction, initial and final conditions, presence or
absence of a conservation law is analysed in the framework of the large-N model
for growth kinetics. The variety of asymptotic behaviours is quite rich,
including standard scaling, multiscaling and a mixture of the two. The
different scaling properties obtained as the parameters are varied are
controlled by a structure of fixed points with their domains of attraction.
Crossovers arising from the competition between distinct fixed points are
explicitely obtained. Temperature fluctuations below the critical temperature
are not found to be irrelevant when the order parameter is conserved. The model
is solved by integration of the equation of motion for the structure factor and
by a renormalization group approach.Comment: 48 pages with 6 figures available upon request, plain LaTe
- …
