756 research outputs found
The spectrum of kink-like oscillations of solar photospheric magnetic elements
Recently, the availability of new high-spatial and -temporal resolution
observations of the solar photosphere has allowed the study of the oscillations
in small magnetic elements. Small magnetic elements have been found to host a
rich variety of oscillations detectable as intensity, longitudinal or
transverse velocity fluctuations which have been interpreted as MHD waves.
Small magnetic elements, at or below the current spatial resolution achieved by
modern solar telescopes, are though to play a relevant role in the energy
budget of the upper layers of the Sun's atmosphere, as they are found to cover
a significant fraction of the solar photosphere. Unfortunately, the limited
temporal length and/or cadence of the data sets, or the presence of
seeing-induced effects have prevented, so far, the estimation of the power
spectra of kink-like oscillations in small magnetic elements with good
accuracy. Motivated by this, we studied kink-like oscillations in small
magnetic elements, by exploiting very long duration and high-cadence data
acquired with the Solar Optical Telescope on board the Hinode satellite. In
this work we present the results of this analysis, by studying the power
spectral density of kink-like oscillations on a statistical basis. We found
that small magnetic elements exhibit a large number of spectral features in the
range 1-12 mHz. More interestingly, most of these spectral features are not
shared among magnetic elements but represent a unique signature of each
magnetic element itself.Comment: A&A accepted for publication. 8 pages, 5 figure
Multifractal structure and intermittence in the AE index time series
The conventional approach to magnetospheric dynamics has not
provided until now a satisfactory description of the singular behaviour of magnetospheric substorms. In this paper we present a multifractal analysis of AE time series,
based on singularity analysis, a new tool to investigate signal dynamics features. The existence of a multifractal structure of the AE index with respect to time dilation has been investigated. The resulting multifractal behaviour of the signal can be interpreted as the signature of an underlying intermittence phenomenon. The derived singularity spectrum is well in agreement with the one of a two-scale Cantor model (P-model), a pure multiplicative model. The presence of intermittence in AE might indicate the occurrence of turbulence in magnetospheric dissipation processes
Observational evidence for buffeting induced kink waves in solar magnetic elements
The role of diffuse photospheric magnetic elements in the energy budget of
the upper layers of the Sun's atmosphere has been the recent subject of many
studies. This was made possible by the availability of high temporal and
spatial resolution observations of the solar photosphere, allowing large
numbers of magnetic elements to be tracked to study their dynamics. In this
work we exploit a long temporal series of seeing-free magnetograms of the solar
photosphere to study the effect of the turbulent convection in the excitation
of kink oscillations in magnetic elements. We make use of the empirical mode
decomposition technique (EMD) in order to study the transverse oscillations of
several magnetic flux tubes. This technique permits the analysis of
non-stationary time series like those associated to the horizontal velocities
of these flux tubes which are continuously advected and dispersed by granular
flows.
Our primary findings reveal the excitation of low frequency modes of kink
oscillations, which are sub-harmonics of a fundamental mode with a minute periodicity. These results constitute a strong case for
observational proof of the excitation of kink waves by the buffeting of the
convection cells in the solar photosphere, and are discussed in light of their
possible role in the energy budget of the upper Sun's atmosphere.Comment: A&A accepte
Super-diffusion versus competitive advection: a simulation
Magnetic element tracking is often used to study the transport and diffusion
of the magnetic field on the solar photosphere. From the analysis of the
displacement spectrum of these tracers, it has been recently agreed that a
regime of super-diffusivity dominates the solar surface. Quite habitually this
result is discussed in the framework of fully developed turbulence. But the
debate whether the super-diffusivity is generated by a turbulent dispersion
process, by the advection due to the convective pattern, or by even another
process, is still open, as is the question about the amount of diffusivity at
the scales relevant to the local dynamo process. To understand how such
peculiar diffusion in the solar atmosphere takes places, we compared the
results from two different data-sets (ground-based and space-borne) and
developed a simulation of passive tracers advection by the deformation of a
Voronoi network. The displacement spectra of the magnetic elements obtained by
the data-sets are consistent in retrieving a super-diffusive regime for the
solar photosphere, but the simulation also shows a super-diffusive displacement
spectrum: its competitive advection process can reproduce the signature of
super-diffusion. Therefore, it is not necessary to hypothesize a totally
developed turbulence regime to explain the motion of the magnetic elements on
the solar surface
- …
