54 research outputs found

    Galactic transient sources with the Cherenkov Telescope Array

    Full text link
    A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities.Comment: 31 pages, 22 figures, submitted to MNRA

    Studies of the nature of the low-energy, gamma-like background for Cherenkov Telescope Array

    Full text link
    The upcoming Cherenkov Telescope Array (CTA) project is expected to provide unprecedented sensitivity in the low-energy ( <~100 GeV) range for Cherenkov telescopes. In order to exploit fully the potential of the telescopes the standard analysis methods for gamma/hadron separation might need to be revised. We study the composition of the background by identifying events composed mostly of a single electromagnetic subcascade or double subcascade from a {\pi}0 (or another neutral meson) decay. We apply the standard simulation and analysis chain of CTA to evaluate the potential of the standard analysis to reject such events.Comment: All CTA contributions at arXiv:1709.03483. Proc. of the 35th International Cosmic Ray Conference, Busan, Kore

    A Trigger Interface Board to manage trigger and timing signals in CTA Large-Sized Telescope and Medium-Sized Telescope cameras

    Full text link
    One of the main goals of the Cherenkov Telescope Array (CTA) observatory is to improve the γ\gamma-ray detection sensitivity by an order of magnitude, compared to the current ground-based observatories. Widening the energy coverage down to 20 GeV and up to 300 TeV is also an important goal. This goal will be possible by using Large-Sized Telescopes (LSTs) for the energy range of 20--200 GeV, Medium-Sized Telescopes (MSTs) for 100 GeV--10 TeV, and Small-Sized Telescopes (SSTs) for energies above 5 TeV. The LSTs, which focus on the lowest energies, are operated in a region dominated by background events originated from the night sky background. To reduce such background events as much as possible, the LST cameras are only read out if at least two of them have been triggered in a short-time coincidence window. Such trigger is implemented for each LST camera in a dedicated module called Trigger Interface Board (TIB). In addition, the TIB is also used in MSTs equipped with the NectarCAM camera system to manage the different trigger and timing signals between LSTs and MSTs, as well as to monitor the different counting rates and dead-time of the cameras. It also assigns a time stamp to each event, which is recorded along with the information provided by the CTA global timing distribution system, based on the White Rabbit protocol. Therefore, the event arrival time can be determined in a redundant way. In this contribution, the main features and the technical performance of the TIB are presented.Comment: All CTA contributions at arXiv:1709.03483. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Kore

    Prototype 9.7 m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system

    Full text link
    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma ray observatory, aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 30 GeV to more than 300 TeV. The 9.7m Schwarzschild-Couder (SC) candidate medium-size telescope for CTA exploits a novel aplanatic two-mirror optical design that provides a large field of view of 8 degrees and substantially improves the off-axis performance giving better angular resolution across all of the field of view with respect to single-mirror telescopes. The realization of the SC optical design implies the challenging production of large aspherical mirrors accompanied by a submillimeter-precision custom alignment system. In this contribution we report on the status of the implementation of the optical system on a prototype 9.7 m SC telescope located at the Fred Lawrence Whipple Observatory in southern Arizona.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan, Korea. All CTA contributions at arXiv:1709.0348

    ASTRI SST-2M prototype and mini-array simulation chain, data reduction software, and archive in the framework of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is a worldwide project aimed at building the next-generation ground-based gamma-ray observatory. Within the CTA project, the Italian National Institute for Astrophysics (INAF) is developing an end-to-end prototype of the CTA Small-Size Telescopes with a dual-mirror (SST-2M) Schwarzschild-Couder configuration. The prototype, named ASTRI SST-2M, is located at the INAF "M.C. Fracastoro" observing station in Serra La Nave (Mt. Etna, Sicily) and is currently in the scientific and performance validation phase. A mini-array of (at least) nine ASTRI telescopes has been then proposed to be deployed at the Southern CTA site, by means of a collaborative effort carried out by institutes from Italy, Brazil, and South-Africa. The CTA/ASTRI team is developing an end-to-end software package for the reduction of the raw data acquired with both ASTRI SST-2M prototype and mini-array, with the aim of actively contributing to the global ongoing activities for the official data handling system of the CTA observatory. The group is also undertaking a massive Monte Carlo simulation data production using the detector Monte Carlo software adopted by the CTA consortium. Simulated data are being used to validate the simulation chain and evaluate the ASTRI SST-2M prototype and mini-array performance. Both activities are also carried out in the framework of the European H2020-ASTERICS (Astronomy ESFRI and Research Infrastructure Cluster) project. A data archiving system, for both ASTRI SST-2M prototype and mini-array, has been also developed by the CTA/ASTRI team, as a testbed for the scientific archive of CTA. In this contribution, we present the main components of the ASTRI data handling systems and report the status of their development.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea. All CTA contributions at arXiv:1709.0348

    Performance of a small size telescope (SST-1M) camera for gamma-ray astronomy with the Cherenkov Telescope Array

    Full text link
    The foreseen implementations of the Small Size Telescopes (SST) in CTA will provide unique insights into the highest energy gamma rays offering fundamental means to discover and under- stand the sources populating the Galaxy and our local neighborhood. Aiming at such a goal, the SST-1M is one of the three different implementations that are being prototyped and tested for CTA. SST-1M is a Davies-Cotton single mirror telescope equipped with a unique camera technology based on SiPMs with demonstrated advantages over classical photomultipliers in terms of duty-cycle. In this contribution, we describe the telescope components, the camera, and the trigger and readout system. The results of the commissioning of the camera using a dedicated test setup are then presented. The performances of the camera first prototype in terms of expected trigger rates and trigger efficiencies for different night-sky background conditions are presented, and the camera response is compared to end-to-end simulations.Comment: All CTA contributions at arXiv:1709.0348

    Control Software for the SST-1M Small-Size Telescope prototype for the Cherenkov Telescope Array

    Full text link
    The SST-1M is a 4-m Davies--Cotton atmospheric Cherenkov telescope optimized to provide gamma-ray sensitivity above a few TeV. The SST-1M is proposed as part of the Small-Size Telescope array for the Cherenkov Telescope Array (CTA), the first prototype has already been deployed. The SST-1M control software of all subsystems (active mirror control, drive system, safety system, photo-detection plane, DigiCam, CCD cameras) and the whole telescope itself (master controller) uses the standard software design proposed for all CTA telescopes based on the ALMA Common Software (ACS) developed to control the Atacama Large Millimeter Array (ALMA). Each subsystem is represented by a separate ACS component, which handles the communication to and the operation of the subsystem. Interfacing with the actual hardware is performed via the OPC UA communication protocol, supported either natively by dedicated industrial standard servers (PLCs) or separate service applications developed to wrap lower level protocols (e.g. CAN bus, camera slow control) into OPC UA. Early operations of the telescope without the camera were already carried out. The camera is fully assembled and is capable to perform data acquisition using artificial light source.Comment: In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea. All CTA contributions at arXiv:1709.0348

    CTAO Instrument Response Functions - prod5 version v0.1

    No full text
    CTAO Instrument Response Functions - prod5 version v0.1 The CTA Observatory (CTAO) will provide very wide energy range and excellent angular resolution and sensitivity in comparison to any existing gamma-ray detector. Energies down to 20 GeV will allow CTAO to study the most distant objects. Energies up to 300 TeV will push CTAO beyond the edge of the known electromagnetic spectrum, providing a completely new view of the sky. This data repository provides access to performance evaluation and instrument response functions (IRFs) for CTA. IRF version: prod5 v0.1 Telescope model and site configuration: prod5-model Publication date: Sep 2021 Archived webpage with performance figures included: CTAO Performance Description (file Website.md) Licence: this work is licensed under a Creative Commons Attribution 4.0 International License . Please use the contact address [email protected] for any inquiries. Citation and Acknowledgements: In cases for which the CTA instrument response functions are used in a research project, we ask to add the following acknowledgement in any resulting publication: 'This research has made use of the CTA instrument response functions provided by the CTA Consortium and Observatory, see https://www.ctao-observatory.org/science/cta-performance/ (version prod5 v0.1; [citation]) for more details.' Please use the following BibTex Entry for [citation] in the reference section of your publication: https://zenodo.org/record/5499840/export/hx Description Monte Carlo Simulations: The performance values are derived from detailed Monte Carlo (MC) simulations of the CTA instrument based on the CORSIKA air shower code (v7.71, with the hadronic interaction models QGSjet-II-04 and URQMD, [1]) and telescope simulation tool sim_telarray [2]. A power- law gamma-ray spectrum with photon index 2.62 was assumed in the calculations, although none of the instrument response functions (e.g. differential flux sensitivities, effective areas, angular or energy resolutions) depends on the assumed spectral shape of the gamma-ray source. Background cosmic-ray spectra of proton and electron/positron particle types are modelled according to recent measurements from cosmic-ray instruments. Nominal telescope pointing is assumed, with all telescopes pointing directions parallel to each other (performance estimation for other pointing modes, e.g. divergent pointing will be provided in the future). Performance estimations are available for three zenith angles (20 deg, 40 deg, and 60 deg), and for each zenith angle for two different azimuth angles (corresponding to pointing towards the magnetic North and South). There are significant performance differences found between the two azimuthal pointing directions (especially for the Northern site) as the impact of the geomagnetic field is large enough to influence notably the air shower development. For general studies, the use of the azimuth-averaged instrument response functions is recommended. Instrument Response Functions (IRFs): The analysis has been tuned to maximize the performance in terms of flux sensitivity. The optimal analysis cuts depend on the duration of the observation, therefore the IRFs are provided for 3 different observation times, from 0.5 to 50 h. IRFs are provided as binned histogram or FITS tables. It should be stressed, that the full potential of CTA in terms of angular and energy resolution is not revealed by these IRFS, due to the focus on the optimisation for best flux sensitivity. In general all histograms are binned with a 0.2-binning on the logarithmic energy axis (5 bins per decade); some selected histograms (e.g. effective areas or energy migration matrices) are provided with a finer binning. Effective area and energy migration matrix are available in a double version: one for the case in which there is no a priori knowledge of the true direction of incoming gamma rays (e.g. for the observation of diffuse sources), and another for observations of point-like objects (including among the analysis cuts one on the angle between the true and the reconstructed gamma-ray direction). IRFs are provided in ROOT format and as FITS tables. The FITS tables can be used directly as input to science analysis tools. The values of the IRFs are identical for the different file format, with one exception: the angular point-spread function is approximated by a Gaussian function for the FITS tables, while the ROOT files contain the full distribution. Telescope layouts are preliminary and subject to change. The following array layouts (Alpha configuration) have been assumed: CTA South with 14 MSTs and 37 SSTs (see [figure](figures/CTA-Performance-prod5-v0.1-South-Alpha-Layout.png)) CTA North with 4 LSTs and 9 MSTs (see [figure](figures/CTA-Performance-prod5-v0.1-North-Alpha-Layout.png)) Two zip files are uploaded: full archive with IRFs in FITS and ROOT format: cta-prod5-zenodo-v0.1.zip partial archive with IRFs in FITS format only: cta-prod5-zenodo-fitsonly-v0.1.zip File Naming (examples): Prod5-North-40deg-AverageAz-4LSTs09MSTs.18000s-v0.1.root: IRF for CTA Northern site on La Palma, 40 deg zenith angle, azimuth-averaged pointing, optimised for 5 hours of observation time Prod5-South-20deg-AverageAz-14MSTs37SSTs.180000s-v0.1.fits.gz: IRF for CTA Southern site in Paranal, 20 deg zenith angle, azimuth-averaged pointing, optimised for 50 hours of observation time List of files: FITS format: fits/CTA-Performance-prod5-v0.1-North-20deg.FITS.tar.gz fits/CTA-Performance-prod5-v0.1-North-40deg.FITS.tar.gz fits/CTA-Performance-prod5-v0.1-North-60deg.FITS.tar.gz fits/CTA-Performance-prod5-v0.1-South-20deg.FITS.tar.gz fits/CTA-Performance-prod5-v0.1-South-40deg.FITS.tar.gz fits/CTA-Performance-prod5-v0.1-South-60deg.FITS.tar.gz ROOT format: root/CTA-Performance-prod5-v0.1-North-20deg.tar.gz root/CTA-Performance-prod5-v0.1-North-40deg.tar.gz root/CTA-Performance-prod5-v0.1-North-60deg.tar.gz root/CTA-Performance-prod5-v0.1-South-20deg.tar.gz root/CTA-Performance-prod5-v0.1-South-40deg.tar.gz root/CTA-Performance-prod5-v0.1-South-60deg.tar.gz IRFs for subarrays of e.g., MSTs only are in the files named MSTSubArray (similar for all other telescope types). References [1] https://www.ikp.kit.edu/corsika/ [2] Bernloehr, K. 2008, Astroparticle Physics, 30, 149 Acknowledgements We would like to thank the computing centres that provided resources for the generation of the Prod 5 Instrument Response Functions (IRFs): CAMK, Nicolaus Copernicus Astronomical Center, Warsaw, Poland CIEMAT-LCG2, CIEMAT, Madrid, Spain CYFRONET-LCG2, ACC CYFRONET AGH, Cracow, Poland DESY-ZN, Deutsches Elektronen-Synchrotron, Standort Zeuthen, Germany GRIF, Grille de Recherche d’Ile de France, Paris, France IN2P3-CC, Centre de Calcul de l’IN2P3, Villeurbanne, France IN2P3-CPPM, Centre de Physique des Particules de Marseille, Marseille, France IN2P3-LAPP, Laboratoire d Annecy de Physique des Particules, Annecy, France INFN-FRASCATI, INFN Frascati, Frascati, Italy INFN-T1, CNAF INFN, Bologna, Italy INFN-TORINO, INFN Torino, Torino, Italy MPIK, Heidelberg, Germany OBSPM, Observatoire de Paris Meudon, Paris, France PIC, port d’informacio cientifica, Bellaterra, Spain prague_cesnet_lcg2, CESNET, Prague, Czech Republic praguelcg2, FZU Prague, Prague, Czech Republic UKI-NORTHGRID-LANCS-HEP, Lancaster University, United Kingdo

    Contributions from the Cherenkov Telescope Array (CTA) Consortium to the ICRC 2011

    Get PDF
    The Cherenkov Telescope Array (CTA) is a project for the construction of a next generation VHE gamma ray observatory with full sky coverage. Its aim is improving by about one order of magnitude the sensitivity of the existing installations, covering about 5 decades in energy (from few tens of GeV to above a hundred TeV) and having enhanced angular and energy resolutions. During 2010 the project became a truly global endeavour carried out by a consortium of about 750 collaborators from Europe, Asia, Africa and the North and South Americas. Also during 2010 the CTA project completed its Design Study phase and started a Preparatory Phase that is expected to extend for three years and should lead to the starting of the construction of CTA. An overview of the CTA Consortium activities project will be given.Comment: 81 pages. Presented at the 32nd ICRC, Beijing, 2011. The full list of authors and institutions of the CTA consortium can be found here: http://www.cta-observatory.org/?q=node/2
    corecore