60 research outputs found
Tumor Functional Heterogeneity Unraveled by scRNA-seq Technologies
Effective cancer treatment has been precluded by the presence of various forms of intratumoral complexity that drive treatment resistance and metastasis. Recent single-cell sequencing technologies are significantly facilitating the characterization of tumor internal architecture during disease progression. New applications and advances occurring at a fast pace predict an imminent broad application of these technologies in many research areas. As occurred with next-generation sequencing (NGS) technologies, once applied to clinical samples across tumor types, single-cell sequencing technologies could trigger an exponential increase in knowledge of the molecular pathways involved in cancer progression and contribute to the improvement of cancer treatment
Ageing compromises mouse thymus function and remodels epithelial cell differentiation.
Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell death and compromised organ function. This is first observed in the thymus, the primary lymphoid organ that generates and selects T cells. However, the molecular and cellular mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse ageing leads to less efficient T cell selection, decreased self-antigen representation and increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the function of individual mature thymic epithelial cells is compromised only modestly. Specifically, an early-life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs the core immunological functions of the thymus
Recommended from our members
A single-cell transcriptomic atlas characterizes ageing tissues in the mouse
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. Despite rapid advances over recent years, many of the molecular and cellular processes which underlie progressive loss of healthy physiology are poorly understood. To gain a better insight into these processes we have created a single cell transcriptomic atlas across the life span of Mus musculus which includes data from 23 tissues and organs. We discovered cell-specific changes occurring across multiple cell types and organs, as well as age related changes in the cellular composition of different organs. Using single-cell transcriptomic data we were able to assess cell type specific manifestations of different hallmarks of aging, such as senescence, genomic instability and changes in the organism’s immune system. This Tabula Muris Senis provides a wealth of new molecular information about how the most significant hallmarks of aging are reflected in a broad range of tissues and cell types
SmartSeq2 for HTP Generation of Bulk RNA Libraries v1
[insert abstract from MACA_Bulk paper] </p
Single-Cell Analysis of the Normal Mouse Aorta Reveals Functionally Distinct Endothelial Cell Populations
- …
