108 research outputs found

    Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω\Omega particles

    Get PDF
    An analytical model is presented for a rectangular lattice of isotropic scatterers with electric and magnetic resonances. Each isotropic scatterer is formed by putting appropriately 6 Ω\Omega-shaped perfectly conducting particles on the faces of a cubic unit cell. A self-consistent dispersion equation is derived and then used to calculate correctly the effective permittivity and permeability in the frequency band where the lattice can be homogenized. The frequency range in which both the effective permittivity and permeability are negative corresponds to the mini-band of backward waves within the resonant band of the individual isotropic scatterer.Comment: 25 pages, 6 figure

    Equivalent circuit model of radiative heat transfer

    Full text link
    Here, we develop a theory of radiative heat transfer based on an equivalent electrical network representation for the hot material slabs in an arbitrary multilayered environment with arbitrary distribution of temperatures and electromagnetic properties among the layers. Our approach is fully equivalent to the known theories operating with the fluctuating current density, while being significantly simpler in analysis and applications. A practical example of the near-infrared heat transfer through the micron gap filled with an indefinite metamaterial is considered using the suggested method. The giant enhancement of the transferred heat compared to the case of the empty gap is shown.Comment: 19 pages, 6 figures; also see arXiv:1202.3967; a number of misprints corrected, added reference

    Subwavelength resolution for horizontal and vertical polarization by coupled arrays of oblate nanoellipsoids

    Full text link
    A structure comprising a coupled pair of two-dimensional arrays of oblate plasmonic nanoellipsoids in a dielectric host medium is proposed as a superlens in the optical domain for both horizontal and vertical polarizations. By means of simulations it is demonstrated that a structure formed by silver nanoellipsoids is capable of restoring subwavelength features of the object for both polarizations at distances larger than half-wavelength. The bandwidth of subwavelength resolution is in all cases very large (above 13%).Comment: 3 pages with 6 figure
    corecore