3,828 research outputs found
Secondary antibody deficiency: a complication of anti-CD20 therapy for neuroinflammation
B-cell depleting anti-CD20 monoclonal antibody therapies are being increasingly used as long-term maintenance therapy for neuroinflammatory disease compared to many non-neurological diseases where they are used as remission-inducing agents. While hypogammaglobulinaemia is known to occur in over half of patients treated with medium to long-term B-cell-depleting therapy (in our cohort IgG 38, IgM 56 and IgA 18%), the risk of infections it poses seems to be under-recognised. Here, we report five cases of serious infections associated with hypogammaglobulinaemia occurring in patients receiving rituximab for neuromyelitis optica spectrum disorders. Sixty-four per cent of the whole cohort of patients studied had hypogammaglobulinemia. We discuss the implications of these cases to the wider use of anti-CD20 therapy in neuroinflammatory disease
Unstable states in QED of strong magnetic fields
We question the use of stable asymptotic scattering states in QED of strong
magnetic fields. To correctly describe excited Landau states and photons above
the pair creation threshold the asymptotic fields are chosen as generalized
Licht fields. In this way the off-shell behavior of unstable particles is
automatically taken into account, and the resonant divergences that occur in
scattering cross sections in the presence of a strong external magnetic field
are avoided. While in a limiting case the conventional electron propagator with
Breit-Wigner form is obtained, in this formalism it is also possible to
calculate -matrix elements with external unstable particles.Comment: Revtex, 7 pages. To appear in Phys. Rev. D53(2
Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars II: Finite Temperature Effects
We present numerical calculations of the equation of state for dense matter
in high magnetic fields, using a temperature dependent Thomas-Fermi theory with
a magnetic field that takes all Landau levels into account. Free energies for
atoms and matter are also calculated as well as profiles of the electron
density as a function of distance from the atomic nucleus for representative
values of the magnetic field strength, total matter density, and temperature.
The Landau shell structure, which is so prominent in cold dense matter in high
magnetic fields, is still clearly present at finite temperature as long as it
is less than approximately one tenth of the cyclotron energy. This structure is
reflected in an oscillatory behaviour of the equation of state and other
thermodynamic properties of dense matter and hence also in profiles of the
density and pressure as functions of depth in the surface layers of magnetic
neutron stars. These oscillations are completely smoothed out by thermal
effects at temperatures of the order of the cyclotron energy or higher.Comment: 37 pages, 17 figures included, submitted to Ap
Influence of cardiac motion on porcine AV node for the non-invasive treatment of atrial fibrillation with a scanned carbon ion beam
Influence of cardiac motion on pulmonary veins for the non-invasive treatment of atrial fibrillation with a scanned cabon ion beam
Schur functions and their realizations in the slice hyperholomorphic setting
we start the study of Schur analysis in the quaternionic setting using the
theory of slice hyperholomorphic functions. The novelty of our approach is that
slice hyperholomorphic functions allows to write realizations in terms of a
suitable resolvent, the so called S-resolvent operator and to extend several
results that hold in the complex case to the quaternionic case. We discuss
reproducing kernels, positive definite functions in this setting and we show
how they can be obtained in our setting using the extension operator and the
slice regular product. We define Schur multipliers, and find their co-isometric
realization in terms of the associated de Branges-Rovnyak space
Little groups of irreps of O(3), SO(3), and the infinite axial subgroups
Little groups are enumerated for the irreps and their components in any basis
of O(3) and SO(3) up to rank 9, and for all irreps of C, C, C, D and D. The results are obtained
by a new chain criterion, which distinguishes massive (rotationally
inequivalent) irrep basis functions and allows for multiple branching paths,
and are verified by inspection. These results are relevant to the determination
of the symmetry of a material from its linear and nonlinear optical properties
and to the choices of order parameters for symmetry breaking in liquid
crystals.Comment: 28 pages and 3 figure
Recurrence relation for relativistic atomic matrix elements
Recurrence formulae for arbitrary hydrogenic radial matrix elements are
obtained in the Dirac form of relativistic quantum mechanics. Our approach is
inspired on the relativistic extension of the second hypervirial method that
has been succesfully employed to deduce an analogous relationship in non
relativistic quantum mechanics. We obtain first the relativistic extension of
the second hypervirial and then the relativistic recurrence relation.
Furthermore, we use such relation to deduce relativistic versions of the
Pasternack-Sternheimer rule and of the virial theorem.Comment: 10 pages, no figure
- …
