31 research outputs found
Transcriptome analyses and antioxidant activity profiling reveal the role of a lignin-derived biostimulant seed treatment in enhancing heat stress tolerance in soybean
Clinical characteristics, treatment modalities, and potential contributing and prognostic factors in patients with bone metastases from gynecological cancers: A systematic review
The purpose of this study is to review the clinical characteristics, treatment modalities, and potential contributing and prognostic factors of bone metastases from gynecological cancers (GCs). A systematic literature search on PubMed, Scopus, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases was conducted. Thirty-one studies, all retrospective, were included in this review, for a total of 2880 patients with GC bone metastases. Primary tumors leading to bone metastases included endometrial cancer (EC), cervical cancer (CC), ovarian cancer (OC), uterine sarcoma (US) and vulvar cancer (VuC), mainly with an International Federation of Gynecology and Obstetrics (FIGO) Stage of III and IV. The main bone metastatic lesion site was the vertebral column, followed by the pelvic bone and lower extremity bones. The median survival rate after bone metastases diagnosis ranged from 3.0 to 45 months. The most frequent treatments were palliative and included radiotherapy and chemotherapy, followed by surgery. The findings of this review give a first dataset for a greater understanding of GC bone metastases that could help clinicians move toward a more “personalized” and thus more effective patient management
Platelet and Lymphocyte-Related Parameters as Potential Markers of Osteoarthritis Severity: A Cross-Sectional Study
Background: Platelets and lymphocytes levels are important in assessing systemic disorders, reflecting inflammatory and immune responses. This study investigated the relationship between blood parameters (platelet count (PLT), mean platelet volume (MPV), lymphocyte count (LINF), and platelet-to-lymphocyte ratio (PLR)) and osteoarthritis (OA) severity, considering age, sex, and body mass index (BMI). Methods: Patients aged ≥40 years were included in this cross-sectional study and divided into groups based on knee OA severity using the Kellgren–Lawrence (KL) grading system. A logistic regression model, adjusted for confounders, evaluated the ability of PLT, MPV, LINF, and PLR to categorize OA severity. Model performance in terms of accuracy, sensitivity, and specificity was assessed using ROC curves. Results: The study involved 245 OA patients (51.4% female, 48.6% male) aged 40–90 years, 35.9% with early OA (KL < 3) and 64.1% moderate/severe OA (KL ≥ 3). Most patients (60.8%) were aged ≥60 years, and BMI was <25 kg/m2 in 33.9%. The model showed that a 25-unit increase in PLR elevates the odds of higher OA levels by 1.30 times (1-unit OR = 1.011, 95% CI [1.004, 1.017], p < 0.005), while being ≥40 years old elevates the odds by 4.42 times (OR 4.42, 95% CI [2.46, 7.95], p < 0.0005). The model’s accuracy was 73.1%, with 84% sensitivity, 52% specificity, and an AUC of 0.74 (95% CI [0.675, 0.805]). Conclusions: Higher PLR increases the likelihood of moderate/severe OA, suggesting that monitoring these biomarkers could aid in early detection and management of OA severity. Further research is warranted to cross-validate these results in larger populations
Design and characterization of a minimally invasive bipolar electrode for electroporation
Objective: To test a new bipolar electrode for electroporation consisting of a single minimally invasive needle. Methods: A theoretical study was performed by using Comsol Multiphysics® software. The prototypes of electrode have been tested on potatoes and pigs, adopting an irreversible electroporation protocol. Different applied voltages and different geometries of bipolar electrode prototype have been evaluated. Results: Simulations and pre-clinical tests have shown that the volume of ablated area is mainly influenced by applied voltage, while the diameter of the electrode had a lesser impact, making the goal of minimal-invasiveness possible. The conductive pole’s length determined an increase of electroporated volume, while the insulated pole length inversely affects the electroporated volume size and shape; when the insulated pole length decreases, a more regular shape of the electric field is obtained. Moreover, the geometry of the electrode determined a different shape of the electroporated volume. A parenchymal damage in the liver of pigs due to irreversible electroporation protocol was observed. Conclusion: The minimally invasive bipolar electrode is able to treat an electroporated volume of about 10 mm in diameter by using a single-needle electrode. Moreover, the geometry and the electric characteristics can be selected to produce ellipsoidal ablation volumes
Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes
Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening
Dispute Prevention, Dispute Settlements and Implementation Facilitation in International Water Law: Te Added Value of the Establishment of an Implementation Mechanism under the Water Convention
The present contribution addresses the topic of dispute prevention and resolution under the 1992 UNECE Water Convention within the wider context of International Water Law
Effect of exogenous application of salt stress and glutamic acid on lettuce (Lactuca sativa L.)
Salinity is a serious environmental issue which can negatively affect crop growth and productivity worldwide. Lettuce is generally considered as a salt-sensitive crop; however, different cultivars may have different adaptive mechanisms to this environmental stress. The application of biostimulants has proven to be a strategic strategy to improve plant responses to abiotic stresses and to foster resilience of crops during cultivation. This study intended to explore the physiological mechanisms underlying Romaine lettuce plant responses to salt stress, also in combination with the exogenous application of glutamic acid. The glutamic acid treatment was applied as foliar spray for the first time before salt exposure, followed by three applications during the stress. To understand the effect of salinity and glutamic acid treatment, different physiological and molecular analytical determinations were performed. High salinity induced a general stimulation of PSII and chlorophyll content. In particular, the performance index (+102%) and the number of reaction centres per cross section (+75,7%) increased, whereas the energy dissipation as heat per reaction centres (-32,1%) and the net rate of the centres’ closure (Mo) (-39.4%) decreased. Moreover, a reduction of yield (-26,5%) was observed in plants grown under high salinity. The concentration of proline was stimulated by salinity whereas ABA levels were reduced. The analyses of the genes encoding for ROS scavenging enzymes showed a general downregulation in response to salinity with the only exception of LsSOD. The application of the glutamic acid did not show a clear effect of the amino acid on lettuce plants, regardless the different growing conditions
A Rationale for the Use of Clotted Vertebral Bone Marrow to Aid Tissue Regeneration Following Spinal Surgery
AbstractVertebral body bone marrow aspirate (V-BMA), easily accessible simultaneously with the preparation of the site for pedicle screw insertion during spinal procedures, is becoming an increasingly used cell therapy approach in spinal surgery. However, the main drawbacks for V-BMA use are the lack of a standardized procedure and of a structural texture with the possibility of diffusion away from the implant site. The aim of this study was to evaluate, characterize and compare the biological characteristics of MSCs from clotted V-BMA and MSCs from whole and concentrate V-BMAs. MSCs from clotted V-BMA showed the highest cell viability and growth factors expression (TGF-β, VEGF-A, FGF2), the greatest colony forming unit (CFU) potency, cellular homogeneity, ability to differentiate towards the osteogenic (COL1AI, TNFRSF11B, BGLAP) and chondrogenic phenotype (SOX9) and the lowest ability to differentiate toward the adipogenic lineage (ADIPOQ) in comparison to all the other culture conditions. Additionally, results revealed that MSCs, differently isolated, expressed different level of HOX and TALE signatures and that PBX1 and MEIS3 were down-regulated in MSCs from clotted V-BMA in comparison to concentrated one. The study demonstrated for the first time that the cellular source inside the clotted V-BMA showed the best biological properties, representing an alternative and advanced cell therapy approach for patients undergoing spinal surgery.</jats:p
Bone morphogenetic protein-2 signaling in the osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields
Pulsed electromagnetic fields (PEMFs) are clinically used with beneficial effects in the treatment of bone fracture healing. This is due to PEMF ability to favor the osteogenic differentiation of mesenchymal stem cells (MSCs). Previous studies suggest that PEMFs enhance the osteogenic activity of bone morphogenetic protein-2 (BMP2) which is used in various therapeutic interventions. This study investigated the molecular events associated to the synergistic activity of PEMFs and BMP2 on osteogenic differentiation. To this aim, human MSCs (hMSCs) were exposed to PEMFs (75 Hz, 1.5 mT) in combination with BMP2, upon detection of the minimal dose able to induce differentiation. Changes in the expression of BMP signaling pathway genes including receptors and ligands, as well as in the phosphorylation of BMP downstream signaling proteins, such as SMAD1/5/8 and MAPK, were analyzed. Results showed the synergistic activity of PEMFs and BMP2 on osteogenic differentiation transcription factors and markers. The PEMF effects were associated to the increase in BMP2, BMP6, and BMP type I receptor gene expression, as well as SMAD1/5/8 and p38 MAPK activation. These results increase knowledge concerning the molecular events involved in PEMF stimulation showing that PEMFs favor hMSCs osteogenic differentiation by the modulation of BMP signaling components
