1,093 research outputs found

    Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle

    Get PDF
    Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time

    Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia

    Get PDF
    BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci

    Disulfide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response.

    Get PDF
    The Frank-Starling mechanism allows the amount of blood entering the heart from the veins to be precisely matched with the amount pumped out to the arterial circulation. As the heart fills with blood during diastole, the myocardium is stretched and oxidants are produced. Here we show that protein kinase G Iα (PKGIα) is oxidant-activated during stretch and this form of the kinase selectively phosphorylates cardiac phospholamban Ser16-a site important for diastolic relaxation. We find that hearts of Cys42Ser PKGIα knock-in (KI) mice, which are resistant to PKGIα oxidation, have diastolic dysfunction and a diminished ability to couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent with impaired relaxation and contractile function. We conclude that oxidation of PKGIα during myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank-Starling response

    Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride

    Get PDF
    Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects.

    Get PDF
    The acquisition of physiological strategies to tolerate novel thermal conditions allows organisms to exploit new environments. As a result, thermal tolerance is a key determinant of the global distribution of biodiversity, yet the constraints on its evolution are not well understood. Here we investigate parallel evolution of cold tolerance in New Zealand stick insects, an endemic radiation containing three montane-occurring species. Using a phylogeny constructed from 274 orthologous genes, we show that stick insects have independently colonized montane environments at least twice. We compare supercooling point and survival of internal ice formation among ten species from eight genera, and identify both freeze tolerance and freeze avoidance in separate montane lineages. Freeze tolerance is also verified in both lowland and montane populations of a single, geographically widespread, species. Transcriptome sequencing following cold shock identifies a set of structural cuticular genes that are both differentially regulated and under positive sequence selection in each species. However, while cuticular proteins in general are associated with cold shock across the phylogeny, the specific genes at play differ among species. Thus, while processes related to cuticular structure are consistently associated with adaptation for cold, this may not be the consequence of shared ancestral genetic constraints

    A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.

    Get PDF
    PMCID: PMC3931784 Open Access article: BB/G006652/1 and BB/G006369/1.Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a "developmental approach" to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model "developmental approach" allows us to generate biologically-realistic connectomes

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe
    corecore