112,785 research outputs found

    The aerospace plane design challenge: Credible computational fluid dynamics results

    Get PDF
    Computational fluid dynamics (CFD) is necessary in the design processes of all current aerospace plane programs. Single-stage-to-orbit (STTO) aerospace planes with air-breathing supersonic combustion are going to be largely designed by means of CFD. The challenge of the aerospace plane design is to provide credible CFD results to work from, to assess the risk associated with the use of those results, and to certify CFD codes that produce credible results. To establish the credibility of CFD results used in design, the following topics are discussed: CFD validation vis-a-vis measurable fluid dynamics (MFD) validation; responsibility for credibility; credibility requirement; and a guide for establishing credibility. Quantification of CFD uncertainties helps to assess success risk and safety risks, and the development of CFD as a design tool requires code certification. This challenge is managed by designing the designers to use CFD effectively, by ensuring quality control, and by balancing the design process. For designing the designers, the following topics are discussed: how CFD design technology is developed; the reasons Japanese companies, by and large, produce goods of higher quality than the U.S. counterparts; teamwork as a new way of doing business; and how ideas, quality, and teaming can be brought together. Quality control for reducing the loss imparted to the society begins with the quality of the CFD results used in the design process, and balancing the design process means using a judicious balance of CFD and MFD

    Computational fluid dynamics model of a quad-rotor helicopter for dynamic analysis

    Get PDF
    The control and performance of a quad-rotor helicopter UAV is greatly influenced by its aerodynamics, which in turn is affected by the interactions with features in its remote environment. This paper presents details of Computational Fluid Dynamics (CFD) simulation and analysis of a quadrotor helicopter. It starts by presenting how SolidWorks software is used to develop a 3-D Computer Aided Design (CAD) model of the quad-rotor helicopter, then describes how CFD is used as a computer based mathematical modelling tool to simulate and analyze the effects of wind flow patterns on the performance and control of the quadrotor helicopter. For the purpose of developing a robust adaptive controller for the quad-rotor helicopter to withstand any environmental constraints, which is not within the scope of this paper; this work accurately models the quad-rotor static and dynamic characteristics from a limited number of time-accurate CFD simulations

    Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2013 ElsevierThis paper reports on a validation study of CFD models used to predict the effect of PCM clay boards on the control of indoor environments, in ventilated and non-ventilated situations. Unlike multi-zonal models, CFD is important in situations where localised properties are essential such as in buildings with complex and large geometries. The employed phase change model considers temperature/enthalpy hysteresis and varying enthalpy-temperature characteristics to more accurately simulate the phase change behaviour of the PCM boards compared to the standard default modelling approach in the commercial CFD codes. Successful validation was obtained with a mean error of 1.0 K relative to experimental data, and the results show that in addition to providing satisfactory quantitative results, CFD also provides qualitative results which are useful in the effective design of indoor thermal environment control systems utilising PCM. These results include: i) temperature and air flow distribution within the space resulting from the use of PCM boards and different night ventilation rates; ii) the fraction of PCM experiencing phase change and is effective in the control of the indoor thermal environment, enabling optimisation of the location of the boards; and iii) the energy impact of PCM boards and adequate ventilation configurations for effective night charging.This work was funded through sponsorship from the UK Engineering and Physical Sciences Research Council (EPSRC), Grant No: EP/H004181/1

    Sketch-To-Solution: An Exploration of Viscous CFD with Automatic Grids

    Get PDF
    Numerical simulation of the Reynolds-averaged NavierStokes (RANS) equations has become a critical tool for the design of aerospace vehicles. However, the issues that affect the grid convergence of three dimensional RANS solutions are not completely understood, as documented in the AIAA Drag Prediction Workshop series. Grid adaption methods have the potential for increasing the automation and discretization error control of RANS solutions to impact the aerospace design and certification process. The realization of the CFD Vision 2030 Study includes automated management of errors and uncertainties of physics-based, predictive modeling that can set the stage for ensuring a vehicle is in compliance with a regulation or specification by using analysis without demonstration in flight test (i.e., certification or qualification by analysis). For example, the Cart3D inviscid analysis package has automated Cartesian cut-cell gridding with output-based error control. Fueled by recent advances in the fields of anisotropic grid adaptation, error estimation, and geometry modeling, a similar work flow is explored for viscous CFD simulations; where a CFD application engineer provides geometry, boundary conditions, and flow parameters, and the sketch-to-solution process yields a CFD simulation through automatic, error-based, grid adaptation

    Simulation of multi-deck medium temperature display cabinets with the integration of CFD and cooling coil models

    Get PDF
    This is the post-print version of the final paper published in Applied Energy. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.In this paper, the model for the multi-deck medium temperature display cabinets is developed with the integration of CFD and cooling coil sub-models. The distributed method is used to develop the cooling coil model with the airside inputs from the outputs of the CFD model. Inversely, the airside outputs from the cooling coil model are used to update the boundary conditions of the CFD model. To validate this cabinet model, a multi-deck medium temperature display cabinet refrigerated with a secondary refrigerant cooling coil was selected as a prototype and mounted in an air conditioned chamber. Extensive tests were conducted at constant space air temperature and varied relative humilities. The cabinet model has been validated by comparing with the test results for the parameters of air at different locations of the flow path, and temperatures of refrigerant and food product, etc. The validated model is therefore used to explore and analyse the cabinet performance and control strategies at various operating and design conditions.DEFR

    Study of the active flow control of an airfoil

    Get PDF
    The student will use a CFD code for simulating the turbulent flow around an airfoil with and without active flow control. The student should have to get familiar with the code and run several cases in order to analyse the influence of different parameters. Outcomes of the project is to analyse the changes in the boundary layer due to the active flow control

    Experimental and numerical investigation of Helmholtz resonators and perforated liners as attenuation devices in industrial gas turbine combustors

    Get PDF
    This paper reports upon developments in the simulation of the passive control of combustion dynamics in industrial gas turbines using acoustic attenuation devices such as Helmholtz resonators and perforated liners. Combustion instability in gas turbine combustors may, if uncontrolled, lead to large-amplitude pressure fluctuations, with consequent serious mechanical problems in the gas turbine combustor system. Perforated combustor walls and Helmholtz resonators are two commonly used passive instability control devices. However, experimental design of the noise attenuation device is time-consuming and calls for expensive trial and error practice. Despite significant advances over recent decades, the ability of Computational Fluid Dynamics to predict the attenuation of pressure fluctuations by these instability control devices is still not well validated. In this paper, the attenuation of pressure fluctuations by a group of multi-perforated panel absorbers and Helmholtz resonators are investigated both by experiment and computational simulation. It is demonstrated that CFD can predict the noise attenuation from Helmholtz resonators with good accuracy. A porous material model is modified to represent a multi-perforated panel and this perforated wall representation approach is demonstrated to be able to accurately predict the pressure fluctuation attenuation effect of perforated panels. This work demonstrates the applicability of CFD in gas turbine combustion instability control device design

    A CFD-informed quasi-steady model of flapping-wing aerodynamics

    Get PDF
    Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimization is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into quasi-steady forces and parameterized based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power as the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterized on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. This demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned aerial systems

    Wall shear stress and arterial performance: two approaches based on engineering

    Get PDF
    This is the Abstract of the Article. Copyright @ 2009 Oxford University.This crucially important subject generates a very wide literature and the recent authoritative ‘in vivo’ review of Reneman et al [1] (& [2]), with Vennemann et al [3], are taken as seminal. In this paper we use approaches based on conventional engineering to address two key issues raised in [1]. The first is that of basic theory. To what extent can underlying fluid flow theory complement the in vivo understanding of wall shear stress (WSS)? In [1], which is sub-titled Discrepancies with Theory’, Poiseuille’s Law is used, extended to Murray’s Law in [2]. But they do ’not hold in vivo’ [2] because ‘we are dealing with non-Newtonian fluid, distensible vessels, unsteady flows, and too short entrance lengths’ [1].This comment coincides with the four factors Xu and Collins identified in their early Review of numerical analysis for bifurcations [4]. Subsequently they addressed these factors, with an engineering-based rationale of comparing predictions of Computational Fluid Dynamics (CFD) with Womersley theory, in vitro and in vivo data. This rationale has yet to be widely adopted, possibly due to computing complexities and the wide boundary condition data needed. This is despite uncertainties in current in vivo WSS [2]. Secondly, [1] and [2] focus on endothelial function. WSS is an ‘important determinant of arterial diameter’ and ‘mean (M)WSS is regulated locally’. One pointer is the possible importance of the glycocalyx, so that ‘endothelial cells are not seeing WSS’ and which ‘may be involved in the regulation of the total blood flow’ [3]. A typical glycocalyx is shown in [3]. Such a model should focus on adaptation of arterial diameter by ‘nitric oxide and prostaglandins’ [1]. So, using an engineering approach, can we construct a model for local regulation of MWSS? Again, remarks from [1]-[3] resonate with the conclusions of a review of nanoscale physiological flows [5] undertaken as part of an early Nanotechnology Initiative of the UK’s EPSRC. In [5] is illustrated the fractal nature of the intestinal villi-glycocalyx geometry, together with an engineering-style control loop for nitric oxide release and arterial diameter-flow rate control. Within our discussion we report two studies to obtain CFD predictive data very close to the endothelial surface. In both cases we compared two independent codes, respectively two CFD codes, and CFD and Lattice Boltzmann solvers. We also give an updated version of the endothelium control loop
    corecore