14,043 research outputs found
The influence of fillers on theophylline release from clay matrices
Abstract: The objectives of this study were to investigate the suitability of magnesium aluminium silicate (MAS) (Veegum®) to control drug release of a model drug, theophylline, from tablet matrices. To this end, the performance of three commonly used fillers namely: lactose, microcrystalline cellulose (Avicel PH102; MCC), and pre-gelatinized starch, Starch 1500 PGS), were evaluated against Veegum®. The physico-mechanical properties of the tablet matrices were studied along with dissolution studies to determine the effect of single or binary mixtures of the excipients on the drug release pattern. A DSC hydration methodology was also employed to characterize the states of water present in the tablet matrices and to determine any impact on drug release. Formulations containing MAS alone produced compacts with the lowest hardness (4.5 kp) whereas formulations containing MCC alone produced the hardest tablets (17.2 kp). Dissolution studies suggested that matrices containing MAS alone released the theophylline quickest as compared to lactose, MCC or PGS. It was difficult to establish a trend of the bound and free water states in the tablet matrices; however the formulation containing only MAS had the highest bound water at 29 %. The results therefore show that theophylline does not interact with MAS. As such the dominant factor in controlling drug release using MAS requires interaction or intercalation with a cationic drug. In the absence of this however, other excipients can play a role in controlling drug release.
Keywords: Veegum, clay matrices, DSC hydration, Magnesium aluminium silicate, filler
Direct observation of irradiation-induced nanocavity shrinkage in Si
Nanocavities in Si substrates, formed by conventional H implantation and thermal annealing, are shown to evolve in size during subsequent Si irradiation. Both ex situ and in situ analytical techniques were used to demonstrate that the mean nanocavity diameter decreases as a function of Si irradiation dose in both the crystalline and amorphous phases. Potential mechanisms for this irradiation-induced nanocavity evolution are discussed. In the crystalline phase, the observed decrease in diameter is attributed to the gettering of interstitials. When the matrix surrounding the cavities is amorphized, cavity shrinkage may be mediated by one of two processes: nanocavities can supply vacancies into the amorphous phase and/or the amorphous phase may flow plastically into the nanocavities. Both processes yield the necessary decrease in density of the amorphous phase relative to crystalline material
Anomalous single production of fourth family up type quark associated with neutral gauge bosons at the LHC
From the present limits on the masses and mixings of fourth family quarks,
they are expected to have mass larger than the top quark and allow a large
range of mixing of the third family. They could also have different dynamics
than the quarks of three families of the Standard Model. The single production
of the fourth family up type quark t' has been studied via anomalous production
process pp-> t'VX (where V=g,Z,\gamma) at the LHC with the center of mass
energy of 7 and 14 TeV. The signatures of such process are discussed within
both the SM decay modes and anomalous decay modes of t' quarks. The sensitivity
to anomalous coupling kappa/Lambda=0.004 TeV^(-1) can be reached at sqrt(s)=14
TeV and L_(int)=100 pb^(-1).Comment: 15 pages, 9 figure
Is the Scottish population living dangerously? Prevalence of multiple risk factors: the Scottish Health Survey 2003
<b>Background:</b>
Risk factors are often considered individually, we aimed to investigate the prevalence of combinations of multiple behavioural risk factors and their association with socioeconomic determinants.<p></p>
<b>Methods:</b>
Multinomial logistic regression was used to model the associations between socioeconomic factors and multiple risk factors from data in the Scottish Health Survey 2003. Prevalence of five main behavioural risk factors - smoking alcohol, diet, overweight/obesity, and physical inactivity, and the odds in relation to demographic, individual and area socioeconomic factors.<p></p>
<b>Results:</b>
Full data were available on 6,574 subjects (80.7% of the survey sample). Nearly the whole adult population (97.5%) reported to have at least one behavioural risk factor; while 55% have three or more risk factors; and nearly 20% have four or all five risk factors. The most important determinants for having four or five multiple risk factors were low educational attainment which conferred around a 3-fold increased odds compared to high education; and residence in the most deprived communities (relative to least deprived) which had greater than 3-fold increased odds.<p></p>
<b>Conclusions:</b>
The prevalence of multiple behavioural risk factors was high and the prevalence of absence of all risk factors very low. These behavioural patterns were socioeconomically determined. Policy to address factors needs to be joined up and better consider underlying socioeconomic circumstances.<p></p>
Pair Production of Fourth Family Charged Sleptons at Colliders
We study the pair production of , which is the supersymmetric
partner of the fourth family charged lepton, at the colliders. It
is shown that the investigation of this process at ILC/CLIC will give
opportunity to differentiate the MSSM with three and four families.Comment: 6 pages, 2 figure
On the and as Bound States and Approximate Nambu-Goldstone Bosons
We reconsider the two different facets of and mesons as
bound states and approximate Nambu-Goldstone bosons. We address several topics,
including masses, mass splittings between and and between and
, meson wavefunctions, charge radii, and the wavefunction overlap.Comment: 15 pages, late
Geometrical Frustration: A Study of 4d Hard Spheres
The smallest maximum kissing-number Voronoi polyhedron of 3d spheres is the
icosahedron and the tetrahedron is the smallest volume that can show up in
Delaunay tessalation. No periodic lattice is consistent with either and hence
these dense packings are geometrically frustrated. Because icosahedra can be
assembled from almost perfect tetrahedra, the terms "icosahedral" and
"polytetrahedral" packing are often used interchangeably, which leaves the true
origin of geometric frustration unclear. Here we report a computational study
of freezing of 4d hard spheres, where the densest Voronoi cluster is compatible
with the symmetry of the densest crystal, while polytetrahedral order is not.
We observe that, under otherwise comparable conditions, crystal nucleation in
4d is less facile than in 3d. This suggest that it is the geometrical
frustration of polytetrahedral structures that inhibits crystallization.Comment: 4 pages, 3 figures; revised interpretatio
Modeling Heterogeneous Materials via Two-Point Correlation Functions: I. Basic Principles
Heterogeneous materials abound in nature and man-made situations. Examples
include porous media, biological materials, and composite materials. Diverse
and interesting properties exhibited by these materials result from their
complex microstructures, which also make it difficult to model the materials.
In this first part of a series of two papers, we collect the known necessary
conditions on the standard two-point correlation function S2(r) and formulate a
new conjecture. In particular, we argue that given a complete two-point
correlation function space, S2(r) of any statistically homogeneous material can
be expressed through a map on a selected set of bases of the function space. We
provide new examples of realizable two-point correlation functions and suggest
a set of analytical basis functions. Moreover, we devise an efficient and
isotropy- preserving construction algorithm, namely, the Lattice-Point
algorithm to generate realizations of materials from their two- point
correlation functions based on the Yeong-Torquato technique. Subsequent
analysis can be performed on the generated images to obtain desired macroscopic
properties. These developments are integrated here into a general scheme that
enables one to model and categorize heterogeneous materials via two-point
correlation functions.Comment: 37 pages, 26 figure
Generalization of Linearized Gouy-Chapman-Stern Model of Electric Double Layer for Nanostructured and Porous Electrodes: Deterministic and Stochastic Morphology
We generalize linearized Gouy-Chapman-Stern theory of electric double layer
for nanostructured and morphologically disordered electrodes. Equation for
capacitance is obtained using linear Gouy-Chapman (GC) or
Debye-ckel equation for potential near complex
electrode/electrolyte interface. The effect of surface morphology of an
electrode on electric double layer (EDL) is obtained using "multiple scattering
formalism" in surface curvature. The result for capacitance is expressed in
terms of the ratio of Gouy screening length and the local principal radii of
curvature of surface. We also include a contribution of compact layer, which is
significant in overall prediction of capacitance. Our general results are
analyzed in details for two special morphologies of electrodes, i.e.
"nanoporous membrane" and "forest of nanopillars". Variations of local shapes
and global size variations due to residual randomness in morphology are
accounted as curvature fluctuations over a reference shape element.
Particularly, the theory shows that the presence of geometrical fluctuations in
porous systems causes enhanced dependence of capacitance on mean pore sizes and
suppresses the magnitude of capacitance. Theory emphasizes a strong influence
of overall morphology and its disorder on capacitance. Finally, our predictions
are in reasonable agreement with recent experimental measurements on
supercapacitive mesoporous systems
- …
