594 research outputs found
Physical Examination Tests for Screening and Diagnosis of Cervicogenic Headache: A Systematic Review
It has been suggested that differential diagnosis of headaches should consist of a robust subjective ex-amination and a detailed physical examination of the cervical spine. Cervicogenic headache (CGH) is a form of headache that involves referred pain from the neck. To our knowledge, no studies have sum-marized the reliability and diagnostic accuracy of physical examination tests for CGH. The aim of this study was to summarize the reliability and diagnostic accuracy of physical examination tests used to diagnose CGH. A systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was performed in four electronic databases (MEDLINE, Web of Science, Embase and Scopus). Full text reports concerning physical tests for the diagnosis of CGH which reported the clinometric properties for assessment of CGH, were included and screened for methodological quality. Quality Appraisal for Reliability Studies (QAREL) and Quality Assessment of Studies of Diagnostic Accuracy (QUADAS-2) scores were completed to assess article quality. Eight articles were retrieved for quality assessment and data extraction. Studies investigating diagnostic reliability of physical exami-nation tests for CGH scored poorer on methodological quality (higher risk of bias) than those of diag-nostic accuracy. There is sufficient evidence showing high levels of reliability and diagnostic accuracy of the selected physical examination tests for the diagnosis of CGH. The cervical flexion-rotation test (CFRT) exhibited both the highest reliability and the strongest diagnostic accuracy for the diagnosis of CGH
Review article: MHD wave propagation near coronal null points of magnetic fields
We present a comprehensive review of MHD wave behaviour in the neighbourhood
of coronal null points: locations where the magnetic field, and hence the local
Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the
Alfven wave and the fast and slow magnetoacoustic waves, has been investigated
in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null
points, for a variety of assumptions, configurations and geometries. In
general, it is found that the fast magnetoacoustic wave behaviour is dictated
by the Alfven-speed profile. In a plasma, the fast wave is focused
towards the null point by a refraction effect and all the wave energy, and thus
current density, accumulates close to the null point. Thus, null points will be
locations for preferential heating by fast waves. Independently, the Alfven
wave is found to propagate along magnetic fieldlines and is confined to the
fieldlines it is generated on. As the wave approaches the null point, it
spreads out due to the diverging fieldlines. Eventually, the Alfven wave
accumulates along the separatrices (in 2D) or along the spine or fan-plane (in
3D). Hence, Alfven wave energy will be preferentially dissipated at these
locations. It is clear that the magnetic field plays a fundamental role in the
propagation and properties of MHD waves in the neighbourhood of coronal null
points. This topic is a fundamental plasma process and results so far have also
lead to critical insights into reconnection, mode-coupling, quasi-periodic
pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note
this is a 2011 paper, not a 2010 pape
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Strings on conifolds from strong coupling dynamics, part I
A method to solve various aspects of the strong coupling expansion of the
superconformal field theory duals of AdS_5 x X geometries from first principles
is proposed. The main idea is that at strong coupling the configurations that
dominate the low energy dynamics of the field theory compactified on a three
sphere are given by certain non-trivial semi-classical configurations in the
moduli space of vacua.
We show that this approach is self-consistent and permits one to express most
of the dynamics in terms of an effective N=4 SYM dynamics. This has the
advantage that some degrees of freedom that move the configurations away from
moduli space can be treated perturbatively, unifying the essential low energy
dynamics of all of these theories. We show that with this formalism one can
compute the energies of strings in the BMN limit in the Klebanov-Witten theory
from field theory considerations, matching the functional form of results found
using AdS geometry. This paper also presents various other technical results
for the semiclassical treatment of superconformal field theories.Comment: 52 pages, JHEP3 styl
Research of working area development parameters in conditions of deep steep deposit finalizing
Отримано формули розрахунку об’єму запасів корисних копалин в приконтурній та глибинній зоні. Встановлено характер впливу параметрів доробки глибоких крутоспадних родовищ відкритим способом на доцільне положення поточних та проектних контурів кар’єру. Встановлено, що найменший середній коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу в проектному положенні. Найменший поточний коефіцієнт розкриву досягається при мінімальному значенні суми обсягів корисної копалини приконтурної зони лежачого і висячого боків покладу, а також робочого борту кар'єру в поточному положенні
Recommended from our members
Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps
The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results
Recommended from our members
85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump
The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
The rapid atmospheric monitoring system of the Pierre Auger Observatory
The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction
- …
