1,124 research outputs found
Operational management of trunk main discolouration risk
Despite significant on-going investment, water companies continue to receive an unacceptable number of discolouration related customer contacts. In this paper, data from intensive distribution system turbidity monitoring and cluster analysis of discolouration customer contacts indicate that a significant proportion of these contacts are due to material mobilising from the trunk main system, and operational flow increases are shown to have a higher discolouration risk than burst incidents. A trunk main discolouration incident highlighting this risk is discussed, demonstrating the need for pro-active trunk main risk assessments. To identify the source of the material event flow rates were modelled using the PODDS (prediction of discolouration in distribution systems) discolouration model. Best practice pro-active management is demonstrated in a case study where the PODDS model is used to implement managed incremental flow changes on a main with known discolouration risk with no discolouration impact to customers and significant cost savings
Corotating and irrotational binary black holes in quasi-circular orbits
A complete formalism for constructing initial data representing black-hole
binaries in quasi-equilibrium is developed. Radiation reaction prohibits, in
general, true equilibrium binary configurations. However, when the timescale
for orbital decay is much longer than the orbital period, a binary can be
considered to be in quasi-equilibrium. If each black hole is assumed to be in
quasi-equilibrium, then a complete set of boundary conditions for all initial
data variables can be developed. These boundary conditions are applied on the
apparent horizon of each black hole, and in fact force a specified surface to
be an apparent horizon. A global assumption of quasi-equilibrium is also used
to fix some of the freely specifiable pieces of the initial data and to
uniquely fix the asymptotic boundary conditions. This formalism should allow
for the construction of completely general quasi-equilibrium black hole binary
initial data.Comment: 13 pages, no figures, revtex4; Content changed slightly to reflect
fact that regularized shift solutions do satisfy the isometry boundary
condition
Tests of sunspot number sequences: 3. Effects of regression procedures on the calibration of historic sunspot data
We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups RB above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number RA using a variety of regression techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does not prevent large errors in the intercalibration (for example sunspot maximum values can be over 30 % too large even for such levels of rAB). In generating the backbone sunspot number (RBB), Svalgaard and Schatten (2015, this issue) force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (“Q Q”) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data
Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments
Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with Beams of High Intensity and Large Brilliance
We study the production of radioisotopes for nuclear medicine in
photonuclear reactions or ()
photoexcitation reactions with high flux [()/s], small
diameter m and small band width () beams produced by Compton back-scattering of laser
light from relativistic brilliant electron beams. We compare them to (ion,np) reactions with (ion=p,d,) from particle accelerators like
cyclotrons and (n,) or (n,f) reactions from nuclear reactors. For
photonuclear reactions with a narrow beam the energy deposition in the
target can be managed by using a stack of thin target foils or wires, hence
avoiding direct stopping of the Compton and pair electrons (positrons).
isomer production via specially selected cascades
allows to produce high specific activity in multiple excitations, where no
back-pumping of the isomer to the ground state occurs. We discuss in detail
many specific radioisotopes for diagnostics and therapy applications.
Photonuclear reactions with beams allow to produce certain
radioisotopes, e.g. Sc, Ti, Cu, Pd, Sn,
Er, Pt or Ac, with higher specific activity and/or
more economically than with classical methods. This will open the way for
completely new clinical applications of radioisotopes. For example Pt
could be used to verify the patient's response to chemotherapy with platinum
compounds before a complete treatment is performed. Also innovative isotopes
like Sc, Cu and Ac could be produced for the first time
in sufficient quantities for large-scale application in targeted radionuclide
therapy.Comment: submitted to Appl. Phys.
Bugs and bytes: Entomological biomonitoring through the integration of deep learning and molecular analysis for merged community and network analysis
Insects play a vital role in ecosystem functioning, but in some parts of the world, their populations have declined significantly in recent decades due to environmental change, agricultural intensification and other anthropogenic drivers. Monitoring insect populations is crucial for understanding and mitigating biodiversity loss, especially in agro-ecosystems where a focus on pests and beneficial insects is gaining momentum in the context of sustainable food systems.
Biomonitoring has long played an important role in providing early warnings of insect pests and their vectored pathogens and for assessing agro-ecosystem management. However, identification of invertebrates by taxonomists is time-consuming and fraught with numerous other challenges, particularly when it comes to real-time monitoring. Recent technological advances in both computational image recognition and molecular ecology have enhanced biomonitoring efficiency and accuracy, reducing labour efforts, but leading to unprecedented volumes of data generated. This perspective article examines the significance and further potential of deep learning with image-based recognition, aided by complementary technologies, in advancing entomological biomonitoring. Using entomological sticky traps as an example, we discuss each step of the workflow required to create ecological networks using image-based recognition, multimodal data and deep learning, and we identify the challenges inherent to this method and other insect survey techniques. In order to become mainstream for global biomonitoring, access to long-term, standardised multimodal data is required for comprehending ecosystem dynamics, structure and function and for mitigating insect population declines
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
Strings on conifolds from strong coupling dynamics, part I
A method to solve various aspects of the strong coupling expansion of the
superconformal field theory duals of AdS_5 x X geometries from first principles
is proposed. The main idea is that at strong coupling the configurations that
dominate the low energy dynamics of the field theory compactified on a three
sphere are given by certain non-trivial semi-classical configurations in the
moduli space of vacua.
We show that this approach is self-consistent and permits one to express most
of the dynamics in terms of an effective N=4 SYM dynamics. This has the
advantage that some degrees of freedom that move the configurations away from
moduli space can be treated perturbatively, unifying the essential low energy
dynamics of all of these theories. We show that with this formalism one can
compute the energies of strings in the BMN limit in the Klebanov-Witten theory
from field theory considerations, matching the functional form of results found
using AdS geometry. This paper also presents various other technical results
for the semiclassical treatment of superconformal field theories.Comment: 52 pages, JHEP3 styl
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
- …
