46 research outputs found

    The lung microbiome in health and disease

    Get PDF
    The Human Microbiome Project began 10 years ago, leading to a signifi cant growth in understanding of the role the human microbiome plays in health and disease. In this article, we explain with an emphasis on the lung, the origins of microbiome research. We discuss how 16S rRNA gene sequencing became the fi rst major molecular tool to examine the bacterial communities present within the human body. We highlight the pitfalls of molecular-based studies, such as false fi ndings resulting from contamination, and the limitations of 16S rRNA gene sequencing. Knowledge about the lung microbiome has evolved from initial scepticism to the realisation that it might have a signifi cant infl uence on many illnesses. We also discuss the lung microbiome in the context of disease by giving examples of important respiratory conditions. In addition, we draw attention to the challenges for metagenomic studies of respiratory samples and the importance of systematic bacterial isolation to enable host–microbiome interactions to be understood. We conclude by discussing how knowledge of the lung microbiome impacts current clinical diagnostics

    Late-onset bloodstream infection and perturbed maturation of the gastrointestinal microbiota in premature infants

    Get PDF
    Late-onset bloodstream infection (LO-BSI) is a common complication of prematurity, and lack of timely diagnosis and treatment can have life-threatening consequences. We sought to identify clinical characteristics and microbial signatures in the gastrointestinal microbiota preceding diagnosis of LO-BSI in premature infants.Daily faecal samples and clinical data were collected over two years from 369 premature neonates (<32 weeks gestation). We analysed samples from 22 neonates who developed LO-BSI and 44 matched control infants. Next-generation sequencing of 16S rRNA gene regions amplified by PCR from total faecal DNA was used to characterise the microbiota of faecal samples preceding diagnosis from infants with LO-BSI and controls. Culture of selected samples was undertaken, and bacterial isolates identified using MALDI-TOF. Antibiograms from bloodstream and faecal isolates were compared to explore strain similarity.From the week prior to diagnosis, infants with LO-BSI had higher proportions of faecal aerobes/facultative anaerobes compared to controls. Risk factors for LO-BSI were identified by multivariate analysis. Enterobacteriaceal sepsis was associated with antecedent multiple lines, low birth weight and a faecal microbiota with prominent Enterobacteriaceae. Staphylococcal sepsis was associated with Staphylococcus OTU faecal over-abundance, and the number of days prior to diagnosis of mechanical ventilation and of the presence of centrally-placed lines. In 12 cases, the antibiogram of the bloodstream isolate matched that of a component of the faecal microbiota in the sample collected closest to diagnosis.The gastrointestinal tract is an important reservoir for LO-BSI organisms, pathogens translocating across the epithelial barrier. LO-BSI is associated with an aberrant microbiota, with abundant staphylococci and Enterobacteriaceae and a failure to mature towards predominance of obligate anaerobes

    Metabolomic, transcriptomic and genetic integrative analysis reveals important roles of adenosine diphosphate in haemostasis and platelet activation in non-small-cell lung cancer

    Get PDF
    Lung cancer is the leading cause of cancer‐related deaths in the world. The most prevalent subtype, accounting for 85% of cases, is non‐small‐cell lung cancer (NSCLC). Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the most common subtypes. Despite recent advances in treatment, the low 5‐year survival rate of NSCLC patients (approximately 13%) reflects the lack of early diagnostic biomarkers and incomplete understanding of the underlying disease mechanisms. We hypothesized that integration of metabolomic, transcriptomic and genetic profiles of tumours and matched normal tissues could help to identify important factors and potential therapeutic targets that contribute to tumorigenesis. We integrated omics profiles in tumours and matched adjacent normal tissues of patients with LUSC (N = 20) and LUAD (N = 17) using multiple system biology approaches. We confirmed the presence of previously described metabolic pathways in NSCLC, particularly those mediating the Warburg effect. In addition, through our combined omics analyses we found that metabolites and genes that contribute to haemostasis, angiogenesis, platelet activation and cell proliferation were predominant in both subtypes of NSCLC. The important roles of adenosine diphosphate in promoting cancer metastasis through platelet activation and angiogenesis suggest this metabolite could be a potential therapeutic target

    Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood

    Get PDF
    BACKGROUND: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. OBJECTIVE: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood. METHODS: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed. RESULTS: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P<5x10-6 ) were found at three other loci: 20p12 (rs13037508 within MACROD2; P=4.9x10-7 ), 14q22 (rs7493885 near NIN; P=2.9x10-6 ) and 2p22 (rs232542 near CYP1B1; P=4.1x10-6 ). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings. CONCLUSION AND CLINICAL RELEVANCE: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms. This article is protected by copyright. All rights reserved

    Metagenomic identification of severe pneumonia pathogens in mechanically-ventilated patients:a feasibility and clinical validity study

    Get PDF
    BACKGROUND: Metagenomic sequencing of respiratory microbial communities for pathogen identification in pneumonia may help overcome the limitations of culture-based methods. We examined the feasibility and clinical validity of rapid-turnaround metagenomics with Nanopore™ sequencing of clinical respiratory specimens. METHODS: We conducted a case-control study of mechanically-ventilated patients with pneumonia (nine culture-positive and five culture-negative) and without pneumonia (eight controls). We collected endotracheal aspirates and applied a microbial DNA enrichment method prior to metagenomic sequencing with the Oxford Nanopore MinION device. For reference, we compared Nanopore results against clinical microbiologic cultures and bacterial 16S rRNA gene sequencing. RESULTS: Human DNA depletion enabled in depth sequencing of microbial communities. In culture-positive cases, Nanopore revealed communities with high abundance of the bacterial or fungal species isolated by cultures. In four cases with resistant clinical isolates, Nanopore detected antibiotic resistance genes corresponding to the phenotypic resistance in antibiograms. In culture-negative pneumonia, Nanopore revealed probable bacterial pathogens in 1/5 cases and Candida colonization in 3/5 cases. In controls, Nanopore showed high abundance of oral bacteria in 5/8 subjects, and identified colonizing respiratory pathogens in other subjects. Nanopore and 16S sequencing showed excellent concordance for the most abundant bacterial taxa. CONCLUSIONS: We demonstrated technical feasibility and proof-of-concept clinical validity of Nanopore metagenomics for severe pneumonia diagnosis, with striking concordance with positive microbiologic cultures, and clinically actionable information obtained from sequencing in culture-negative samples. Prospective studies with real-time metagenomics are warranted to examine the impact on antimicrobial decision-making and clinical outcomes

    Mimicking microbial 'education' of the immune system: a strategy to revert the epidemic trend of atopy and allergic asthma?

    Get PDF
    Deficient microbial stimulation of the immune system, caused by hygiene, may underly the atopy and allergic asthma epidemic we are currently experiencing. Consistent with this 'hygiene hypothesis', research on immunotherapy of allergic diseases also centres on bacteria-derived molecules (eg DNA immunostimulatory sequences) as adjuvants for allergen-specific type 1 immune responses. If we understood how certain microbes physiologically 'educate' our immune system to interact safely with environmental nonmicrobial antigens, we might be able to learn to mimic their beneficial actions. Programmed 'immunoeducation' would consist of safe administration, by the correct route, dose and timing, of those microbial stimuli that are necessary to 'train' the developing mucosal immune system and to maintain an appropriate homeostatic equilibrium between its components. Overall, this would result in a prevention of atopy that is not limited to certain specific allergens. Although such a strategy is far beyond our present potential, it may in principle revert the epidemic trend of atopy and allergic asthma without jeopardizing the fight against infectious diseases

    New opportunities for managing acute and chronic lung infections.

    No full text
    Lung diseases caused by microbial infections affect hundreds of millions of children and adults throughout the world. In Western populations, the treatment of lung infections is a primary driver of antibiotic resistance. Traditional therapeutic strategies have been based on the premise that the healthy lung is sterile and that infections grow in a pristine environment. As a consequence, rapid advances in our understanding of the composition of the microbiota of the skin and bowel have not yet been matched by studies of the respiratory tree. The recognition that the lungs are as populated with microorganisms as other mucosal surfaces provides the opportunity to reconsider the mechanisms and management of lung infections. Molecular analyses of the lung microbiota are revealing profound adverse responses to widespread antibiotic use, urbanization and globalization. This Opinion article proposes how technologies and concepts flowing from the Human Microbiome Project can transform the diagnosis and treatment of common lung diseases

    Dysbiosis anticipating necrotizing enterocolitis in very premature infants

    No full text
    Background. Necrotizing enterocolitis (NEC) is a devastating inflammatory bowel disease of premature infants speculatively associated with infection. Suspected NEC can be indistinguishable from sepsis, and in established cases an infant may die within hours of diagnosis. Present treatment is supportive. A means of presymptomatic diagnosis is urgently needed. We aimed to identify microbial signatures in the gastrointestinal microbiota preceding NEC diagnosis in premature infants. Methods. Fecal samples and clinical data were collected from a 2-year cohort of 369 premature neonates. Next-generation sequencing of 16S ribosomal RNA gene regions was used to characterize the microbiota of prediagnosis fecal samples from 12 neonates with NEC, 8 with suspected NEC, and 44 controls. Logistic regression was used to determine clinical characteristics and operational taxonomic units (OTUs) discriminating cases from controls. Samples were cultured and isolates identified using matrix-assisted laser desorption/ionization–time of flight. Clostridial isolates were typed and toxin genes detected. Results. A clostridial OTU was overabundant in prediagnosis samples from infants with established NEC (P = .006). Culture confirmed the presence of Clostridium perfringens type A. Fluorescent amplified fragment-length polymorphism typing established that no isolates were identical. Prediagnosis samples from NEC infants not carrying profuse C. perfringens revealed an overabundance of a Klebsiella OTU (P = .049). Prolonged continuous positive airway pressure (CPAP) therapy with supplemental oxygen was also associated with increased NEC risk. Conclusions. Two fecal microbiota signatures (Clostridium and Klebsiella OTUs) and need for prolonged CPAP oxygen signal increased risk of NEC in presymptomatic infants. These biomarkers will assist development of a screening tool to allow very early diagnosis of NEC. Clinical Trials Registration. NCT01102738
    corecore