2,733 research outputs found

    A Recursive Algorithm for Computing Inferences in Imprecise Markov Chains

    Full text link
    We present an algorithm that can efficiently compute a broad class of inferences for discrete-time imprecise Markov chains, a generalised type of Markov chains that allows one to take into account partially specified probabilities and other types of model uncertainty. The class of inferences that we consider contains, as special cases, tight lower and upper bounds on expected hitting times, on hitting probabilities and on expectations of functions that are a sum or product of simpler ones. Our algorithm exploits the specific structure that is inherent in all these inferences: they admit a general recursive decomposition. This allows us to achieve a computational complexity that scales linearly in the number of time points on which the inference depends, instead of the exponential scaling that is typical for a naive approach

    On coherent immediate prediction: connecting two theories of imprecise probability

    Get PDF
    We give an overview of two approaches to probabiliity theory where lower and upper probabilities, rather than probabilities, are used: Walley's behavioural theory of imprecise probabilities, and Shafer and Vovk's game-theoretic account of probability. We show that the two theories are more closely related than would be suspected at first sight, and we establish a correspondence between them that (i) has an interesting interpretation, and (ii) allows us to freely import results from one theory into the other. Our approach leads to an account of immediate prediction in the framework of Walley's theory, and we prove an interesting and quite general version of the weak law of large numbers

    Connecting two theories of imprecise probability

    Get PDF

    Command line completion: an illustration of learning and decision making using the imprecise Dirichlet model

    Get PDF
    A method of command line completion based on probabilistic models is described. The method supplements the existing deterministic ones. The probabilistic models are developed within the context of imprecise probabilities. An imprecise Dirichlet model is used to represent the assessments about all possible completions and to allow for learning by observing the commands typed previously. Due to the use of imprecise probabilities a partial (instead of a linear) ordering of the possible completion actions will be constructed during decision making. Markov models can additionally be incorporated to take recurring sequences of commands into account

    Imprecise probability models for inference in exponential families

    Get PDF
    When considering sampling models described by a distribution from an exponential family, it is possible to create two types of imprecise probability models. One is based on the corresponding conjugate distribution and the other on the corresponding predictive distribution. In this paper, we show how these types of models can be constructed for any (regular, linear, canonical) exponential family, such as the centered normal distribution. To illustrate the possible use of such models, we take a look at credal classification. We show that they are very natural and potentially promising candidates for describing the attributes of a credal classifier, also in the case of continuous attributes

    Command line completion: learning and decision making using the imprecise Dirichlet model

    Get PDF

    Modelling practical certainty and its link with classical propositional logic

    Get PDF
    We model practical certainty in the language of accept & reject statement-based uncertainty models. We present three different ways, each time using a different nature of assessment: we study coherent models following from (i) favourability assessments, (ii) acceptability assessments, and (iii) indifference assessments. We argue that a statement of favourability, when used with an appropriate background model, essentially boils down to stating a belief of practical certainty using acceptability assessments. We show that the corresponding models do not form an intersection structure, in contradistinction with the coherent models following from an indifferenc assessment. We construct embeddings of classical propositional logic into each of our models for practical certainty
    corecore