5,700 research outputs found

    Viral processes by random walks on random regular graphs

    Full text link
    We study the SIR epidemic model with infections carried by kk particles making independent random walks on a random regular graph. Here we assume knϵk\leq n^{\epsilon}, where nn is the number of vertices in the random graph, and ϵ\epsilon is some sufficiently small constant. We give an edge-weighted graph reduction of the dynamics of the process that allows us to apply standard results of Erd\H{o}s-R\'{e}nyi random graphs on the particle set. In particular, we show how the parameters of the model give two thresholds: In the subcritical regime, O(lnk)O(\ln k) particles are infected. In the supercritical regime, for a constant β(0,1)\beta\in(0,1) determined by the parameters of the model, βk\beta k get infected with probability β\beta, and O(lnk)O(\ln k) get infected with probability (1β)(1-\beta). Finally, there is a regime in which all kk particles are infected. Furthermore, the edge weights give information about when a particle becomes infected. We exploit this to give a completion time of the process for the SI case.Comment: Published in at http://dx.doi.org/10.1214/13-AAP1000 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore