5,664 research outputs found

    Association of ACE and NOS3 Gene Polymorphisms with Blood Pressure in a Case Control Study of Coronary Artery Disease in Punjab, Pakistan

    Get PDF
    Single nucleotide polymorphisms (SNPs), ACE rs4341 and NOS3 rs1799983 have been reported to be associated with coronary artery disease (CAD) and blood pressure (BP)in many but not all studies. We aimed to investigate the effect of these SNPs on BP and CAD in people from Punjab, Pakistan. A total of 650 subjects (430 CAD cases and 220 controls) were genotyped by TaqMan/KASPar allelic discrimination technique. Two BP measurements were reordered and their mean was calculated. The results showed that the risk allele frequencies (RAFs) of both SNPs were higher in cases than controls but the difference was not statistically significant. For rs4341, RAF in cases and controls was 0.577 vs. 0.525, p = 0.08 and for rs1799983, the RAF was 0.202 vs. 0.178, p = 0.31. The SNPs were not associated with CAD. The CAD odds ratio of rs4341 (1.22,0.97-1.53, p = 0.09) and that of rs1799983 (1.15, 0.86-1.54, p=0.33) was not statistically significant. Mean systolic blood pressure (SBP) and diastolic blood pressure (DBP) were significantly higher in cases than controls (p<0.05) and the SNPs showed a significant association with BP. Each risk allele of rs4341 (G) increased SBP by 10.04±0.8 mmHg and DBP by 2.5±0.6mmHg, while risk allele of rs1799983 (T), increased SBP and DBP by 16.4±0.9mmHg and 8.8±0.6mmHg respectively, all were statistically significant (p<0.05). When a combined effect of genotypes of both SNPs was examined, a significant effect on CAD outcome (p=0.01) was observed when GG of rs4341 and GT of rs1799983 co-existed. Similarly, maximum elevation in BP was observed when risk alleles of both SNPs in homozygous form (GG and TT) appeared together. In conclusion, the SNPs were not independently associated with CAD but were associated with BP in Pakistani subjects under study and may be causing CAD by modulating BP

    Common variants in the genes of triglyceride and HDL-C metabolism lack association with coronary artery disease in the Pakistani subjects.

    Get PDF
    BACKGROUND: Serum Triglyceride (TG) and High Density Lipoprotein (HDL-C) levels are modifiable coronary artery disease (CAD) risk factors. Polymorphisms in the genes regulating TG and HDL-C levels contribute to the development of CAD. The objective of the current study was to investigate the effect of four such single nucleotide polymorphism (SNPs) in the genes for Lipoprotein Lipase (LPL) (rs328, rs1801177), Apolipoprotein A5 (APOA5) (rs66279) and Cholesteryl ester transfer protein (CETP) (rs708272) on HDL-C and TG levels and to examine the association of these SNPs with CAD risk. METHODS: A total of 640 subjects (415 cases, 225 controls) were enrolled in the study. The SNPs were genotyped by KASPar allelic discrimination technique. Serum HDL-C and TG were determined by spectrophotometric methods. RESULTS: The population under study was in Hardy Weinberg equilibrium and minor allele of SNP rs1801177 was completely absent in the studied subjects. The SNPs were association with TG and HDL-C levels was checked through regression analysis. For rs328, the effect size of each risk allele on TG and HDL-C (mmol/l) was 0.16(0.08) and -0.11(0.05) respectively. Similarly, the effect size of rs662799 for TG and HDL-C was 0.12(0.06) and -0.13(0.0.3) and that of rs708272 was 0.08(0.04) and 0.1(0.03) respectively. The risk allele frequencies of the SNPs were higher in cases than controls, but the difference was not significant (p > 0.05) and SNPs were not associated with CAD risk (p > 0.05). The combined gene score of four SNPs significantly raised TG and lowered HDL-C but did not increase CAD risk. CONCLUSION: The studied SNPs were associated with TG and HDL-C levels, but not with CAD in Pakistani population under study

    The UK Paediatric Familial Hypercholesterolaemia Register: preliminary data

    Get PDF
    BACKGROUND: The National Institute for Health and Care Excellence 2008 guidelines on the treatment and management of familial hypercholesterolaemia (FH) recommend that children with FH should be considered for statin treatment by the age of 10 years. The Paediatric FH Register was established in 2012 to collect baseline and long-term follow-up data on all children with FH in the UK. METHODS: Paediatricians and adult lipidologists have been invited to enter baseline data on any child with a clinical diagnosis of FH using an electronic capture record. RESULTS: Baseline data is on 232 children (50% boys, 80% Caucasian), with an untreated mean (SD) total cholesterol of 7.61 (1.48) mmol/L and low-density lipoprotein cholesterol (LDL-C) of 5.67 (1.46) mmol/L. Overall 111/232 (47.8%) of the children were on statins. Children over the age of 10 years at the most recent follow-up were twice as likely to be on statin treatment than those under 10 years (57.6% (102/177) vs 23.1% (9/39), p=0.00009). In both age groups, those subsequently on statin treatment had significantly higher diagnostic total and LDL-C (overall 6.01 (1.46) mmol/L vs 5.31 (1.37) mmol/L, p=0.00007), and had stronger evidence of a family history of early coronary heart disease (CHD) in parent or first-degree relative (overall 28.4% vs 19.0%, p=0.09). In statin-treated children LDL-C level was reduced by 35% (2.07 (1.38) mmol/L) compared with a reduction of 5.5% (0.29 (0.87) mmol/L), p=0.0001 in those not treated. None of those on statin had measured plasma levels of creatine kinase, alanine aminotransferase and AST indicative of statin toxicity (ie, >2.5 times the upper limit of the normal range). CONCLUSIONS: The data indicates that treatment decisions in children with FH are appropriately based on a stronger family history of CHD and higher LDL-C

    Effect of SORT1, APOB and APOE polymorphisms on LDL-C and coronary heart disease in Pakistani subjects and their comparison with Northwick Park Heart Study II

    Get PDF
    BACKGROUND: Many SNPs have been identified in genes regulating LDL-C metabolism, but whether their influence is similar in subjects from different ethnicities is unclear. Effect of 4 such SNPs on LDL-C and coronary heart disease (CHD) was examined in Pakistani subjects and was compared with middle aged UK men from Northwick Park Heart Study II (NPHSII). METHODS: One thousand nine hundred sixty-five (1770 non CHD, 195 CHD) UK and 623 (219 non CHD, 404 CHD) Pakistani subjects were enrolled in the study. The SNPs SORT1 rs646776, APOB rs1042031 and APOE rs429358, rs7412 were genotyped by TaqMan/KASPar technique and their gene score was calculated. LDL-C was calculated by Friedewald equation, results were analyzed using SPSS. RESULTS: Allele frequencies were significantly different (p = <0.05) between UK and Pakistani subjects. However, the SNPs were associated with LDL-C in both groups. In UK non CHD, UK CHD, Pakistani non CHD and Pakistani CHD respectively, for rs646776, per risk allele increase in LDL-C(mmol/l) was 0.18(0.04), 0.06(0.11), 0.15(0.04) and 0.27(0.06) respectively. For rs1042031, per risk allele increase in LDL-C in four groups was 0.11(0.04), 0.04(0.14), 0.15(0.06) and 0.25(0.09) respectively. For APOE genotypes, compared to Ɛ3, each Ɛ2 decreased LDL-C by 0.11(0.06), 0.07(0.15), 0.20(0.08) and 0.38(0.09), while each Ɛ4 increased LDL-C by 0.43(0.06), 0.39(0.21), 0.19(0.11) and 0.39(0.14) respectively. Overall gene score explained a considerable proportion of sample variance in four groups (3.8 %, 1.26 % 13.7 % and 12.3 %). Gene score in both non-CHD groups was significantly lower than CHD subjects. CONCLUSIONS: The SNPs show a dose response association with LDL-C levels and risk of CHD in both populations

    The UK Paediatric Familial Hypercholesterolaemia Register: Statin-related safety and 1-year growth data

    Get PDF
    BACKGROUND: For children with familial hypercholesterolemia (FH), UK guidelines recommend consideration of statin therapy by age 10 years and dietary and lifestyle advice to maintain an ideal body weight. OBJECTIVES: The objective of the study is to use the UK Paediatric Familial Hypercholesterolemia Register to determine: (1) the prevalence of plasma markers of liver toxicity and muscle damage in statin-treated FH children; (2) the prevalence of obesity in FH children compared to the UK general population; and (3) to compare growth rates in statin-treated and nontreated children. METHODS: Differences in registration and 1-year characteristics were compared by Mann-Whitney U tests. Age and gender body mass index percentiles were compared to UK children's growth charts. RESULTS: In 300 children (51% boys, 75% Caucasian, untreated mean [standard deviation] low-density lipoprotein cholesterol 5.50 [1.49] mmol/L), the proportion on statins varied significantly (P 15 years = 73.2%). Statin treatment reduced low-density lipoprotein cholesterol by 31% (1.84 [1.43] mmol/L), and no child showed elevated levels of markers of liver toxicity or muscle damage. At registration, 16.9% of the FH children were overweight (>85th percentile) and 11.1% were obese (>95th percentile) vs reported in 21.2% in UK non-FH children. There was no difference in annual growth rate in statin vs no-statin groups (age-adjusted weight increases 3.58 vs 3.53 kg; P = .91, height 4.45 vs 4.60 cm P = .73). CONCLUSIONS: We show no evidence for statin-related safety or growth issues, but many FH children over the age of 10 years are not on statin treatment. Fewer UK children with FH are obese compared to UK non-FH children

    Structure of the 2,4'-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP.

    Get PDF
    The enzyme 2,4'-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4'-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C-C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active-site pocket where it undergoes peroxide radical-mediated heterolysis

    A dynamic network approach for the study of human phenotypes

    Get PDF
    The use of networks to integrate different genetic, proteomic, and metabolic datasets has been proposed as a viable path toward elucidating the origins of specific diseases. Here we introduce a new phenotypic database summarizing correlations obtained from the disease history of more than 30 million patients in a Phenotypic Disease Network (PDN). We present evidence that the structure of the PDN is relevant to the understanding of illness progression by showing that (1) patients develop diseases close in the network to those they already have; (2) the progression of disease along the links of the network is different for patients of different genders and ethnicities; (3) patients diagnosed with diseases which are more highly connected in the PDN tend to die sooner than those affected by less connected diseases; and (4) diseases that tend to be preceded by others in the PDN tend to be more connected than diseases that precede other illnesses, and are associated with higher degrees of mortality. Our findings show that disease progression can be represented and studied using network methods, offering the potential to enhance our understanding of the origin and evolution of human diseases. The dataset introduced here, released concurrently with this publication, represents the largest relational phenotypic resource publicly available to the research community.Comment: 28 pages (double space), 6 figure

    Influence of Genetic Risk Factors on Coronary Heart Disease Occurrence in Afro-Caribbeans

    Get PDF
    Background Despite excessive rates of cardiovascular risk factors such as hypertension, diabetes, and obesity, Afro-Caribbeans have lower mortality rates from coronary heart disease (CHD) than do whites. This study evaluated the association of genetic risk markers previously identified in whites and CHD in Afro-Caribbeans. Methods We studied 537 Afro-Caribbean individuals (178 CHD cases and 359 controls) who were genotyped for 19 CHD-related single-nucleotide polymorphisms (SNPs). A genetic risk score (GRS) incorporating the 19 SNPs was calculated. These participants were compared with 1360 white individuals from the Second Northwick Park Heart Study. Results In Afro-Caribbeans, patients with CHD had higher rates of hypertension (78.7% vs 30.1%), hypercholesterolemia (52.8% vs 15.0%), and diabetes (53.9% vs 14.8%) and were more often men (64.0% vs 43.7%) and smokers (27.5% vs 13.4%) compared with non-CHD controls (all P < 0.001). The GRS was higher in Afro-Caribbeans with CHD than in those without CHD (13.90 vs 13.17; P < 0.001) and was significantly associated with CHD after adjustment for cardiovascular risk factors, with an odds ratio of 1.40 (95% confidence interval, 1.09-1.80) per standard deviation change. There were significant differences in allelic distributions between the 2 ethnic groups for 14 of the 19 SNPs. The GRS was substantially lower in Afro-Caribbean controls compared with white controls (13.17 vs 16.59; P < 0.001). Conclusions This study demonstrates that a multilocus GRS composed of 19 SNPs associated with CHD in whites is a strong predictor of the disease in Afro-Caribbeans. The differences in CHD occurrence between Afro-Caribbeans and whites might be a result of significant discrepancies in common gene variant distribution
    corecore