119 research outputs found
Open Science Saves Lives: Lessons from the COVID-19 Pandemic
In the last decade Open Science principles, such as Open Access, study preregistration, use of preprints, making available data and code, and open peer review, have been successfully advocated for and are being slowly adopted in many different research communities. In response to the COVID-19 pandemic many publishers and researchers have sped up their adoption of some of these Open Science practices, sometimes embracing them fully and sometimes partially or in a sub-optimal manner. In this article, we express concerns about the violation of some of the Open Science principles and its potential impact on the quality of research output. We provide evidence of the misuses of these principles at different stages of the scientific process. We call for a wider adoption of Open Science practices in the hope that this work will encourage a broader endorsement of Open Science principles and serve as a reminder that science should always be a rigorous process, reliable and transparent, especially in the context of a pandemic where research findings are being translated into practice even more rapidly
Small extracellular vesicles but not microvesicles from Opisthorchis viverrini promote cell proliferation in human cholangiocytes
Chronic infection with O. viverrini has been linked to the development of cholangiocarcinoma (CCA), which is a major public health burden in the Lower Mekong River Basin countries, including Thailand, Lao PDR, Vietnam and Cambodia. Despite its importance, the exact mechanisms by which O. viverrini promotes CCA are largely unknown. In this study, we characterized different extracellular vesicle populations released by O. viverrini (OvEVs) using proteomic and transcriptomic analyses and investigated their potential role in host-parasite interactions. While 120k OvEVs promoted cell proliferation in H69 cells at different concentrations, 15k OvEVs did not produce any effect compared to controls. The proteomic analysis of both populations showed differences in their composition that could contribute to this differential effect. Furthermore, the miRNAs present in 120k EVs were analysed and their potential interactions with human host genes was explored by computational target prediction. Different pathways involved in inflammation, immune response and apoptosis were identified as potentially targeted by the miRNAs present in this population of EVs. This is the first study showing specific roles for different EV populations in the pathogenesis of a parasitic helminth, and more importantly, an important advance towards deciphering the mechanisms used in establishment of opisthorchiasis and liver fluke infection-associated malignancy.This research was supported from a project grant from the National Health and Medical Research Council of Australia (NHMRC), grant identification number APP1085309, the National Cancer Institute, National Institutes of Health, award number R01CA164719, and the Fundamental Fund, Khon Kaen University. AL is supported by a Level Three NHMRC Investigator Grant APP2008450. JS is supported by a Ramon y Cajal fellowship (RYC2021-032443-I) from the Ministerio de Ciencia e Innovacion from Spain.N
Why don't we share data and code? Perceived barriers and benefits to public archiving practices
The biological sciences community is increasingly recognizing the value ofopen, reproducible and transparent research practices for science and societyat large. Despite this recognition, many researchers fail to share their dataand code publicly. This pattern may arise from knowledge barriers abouthow to archive data and code, concerns about its reuse, and misalignedcareer incentives. Here, we define, categorize and discuss barriers to dataand code sharing that are relevant to many research fields. We explorehow real and perceived barriers might be overcome or reframed in thelight of the benefits relative to costs. By elucidating these barriers and thecontexts in which they arise, we can take steps to mitigate them and alignour actions with the goals of open science, both as individual scientistsand as a scientific community
A Research Agenda for Helminth Diseases of Humans: Basic Research and Enabling Technologies to Support Control and Elimination of Helminthiases
Successful and sustainable intervention against human helminthiases depends on optimal utilisation of available control measures and development of new tools and strategies, as well as an understanding of the evolutionary implications of prolonged intervention on parasite populations and those of their hosts and vectors. This will depend largely on updated knowledge of relevant and fundamental parasite biology. There is a need, therefore, to exploit and apply new knowledge and techniques in order to make significant and novel gains in combating helminthiases and supporting the sustainability of current and successful mass drug administration (MDA) programmes. Among the fields of basic research that are likely to yield improved control tools, the Disease Reference Group on Helminth Infections (DRG4) has identified four broad areas that stand out as central to the development of the next generation of helminth control measures: 1) parasite genetics, genomics, and functional genomics; 2) parasite immunology; 3) (vertebrate) host–parasite interactions and immunopathology; and 4) (invertebrate) host–parasite interactions and transmission biology. The DRG4 was established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR). The Group was given the mandate to undertake a comprehensive review of recent advances in helminthiases research in order to identify notable gaps and highlight priority areas. This paper summarises recent advances and discusses challenges in the investigation of the fundamental biology of those helminth parasites under the DRG4 Group's remit according to the identified priorities, and presents a research and development agenda for basic parasite research and enabling technologies that will help support control and elimination efforts against human helminthiases
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Long-term cellular immunity of vaccines for Zaire Ebola Virus Diseases
Recent Ebola outbreaks underscore the importance of continuous prevention and disease control efforts. Authorized vaccines include Merck’s Ervebo (rVSV-ZEBOV) and Johnson & Johnson’s two-dose combination (Ad26.ZEBOV/MVA-BN-Filo). Here, in a five-year follow-up of the PREVAC randomized trial (NCT02876328), we report the results of the immunology ancillary study of the trial. The primary endpoint is to evaluate long-term memory T-cell responses induced by three vaccine regimens: Ad26–MVA, rVSV, and rVSV–booster. Polyfunctional EBOV-specific CD4+ T-cell responses increase after Ad26 priming and are further boosted by MVA, whereas minimal responses are observed in the rVSV groups, declining after one year. In-vitro expansion for eight days show sustained EBOV-specific T-cell responses for up to 60 months post-prime vaccination with both Ad26-MVA and rVSV, with no decline. Cytokine production analysis identify shared biomarkers between the Ad26-MVA and rVSV groups. In secondary endpoint, we observed an elevation of pro-inflammatory cytokines at Day 7 in the rVSV group. Finally, we establish a correlation between EBOV-specific T-cell responses and anti-EBOV IgG responses. Our findings can guide booster vaccination recommendations and help identify populations likely to benefit from revaccination
Long-term cellular immunity of vaccines for Zaire Ebola Virus Diseases
Recent Ebola outbreaks underscore the importance of continuous prevention and disease control efforts. Authorized vaccines include Merck’s Ervebo (rVSV-ZEBOV) and Johnson & Johnson’s two-dose combination (Ad26.ZEBOV/MVA-BN-Filo). Here, in a five-year follow-up of the PREVAC randomized trial (NCT02876328), we report the results of the immunology ancillary study of the trial. The primary endpoint is to evaluate long-term memory T-cell responses induced by three vaccine regimens: Ad26–MVA, rVSV, and rVSV–booster. Polyfunctional EBOV-specific CD4+ T-cell responses increase after Ad26 priming and are further boosted by MVA, whereas minimal responses are observed in the rVSV groups, declining after one year. In-vitro expansion for eight days show sustained EBOV-specific T-cell responses for up to 60 months post-prime vaccination with both Ad26-MVA and rVSV, with no decline. Cytokine production analysis identify shared biomarkers between the Ad26-MVA and rVSV groups. In secondary endpoint, we observed an elevation of pro-inflammatory cytokines at Day 7 in the rVSV group. Finally, we establish a correlation between EBOV-specific T-cell responses and anti-EBOV IgG responses. Our findings can guide booster vaccination recommendations and help identify populations likely to benefit from revaccination
Evaluation of waning of IgG antibody responses after rVSVΔG-ZEBOV-GP and Ad26.ZEBOV, MVA-BN-Filo Ebola virus disease vaccines: a modelling study from the PREVAC randomized trial.
rVSVΔG-ZEBOV-GP and Ad26.ZEBOV, MVA-BN-Filo are WHO-prequalified vaccination regimens against Ebola virus disease (EVD). Challenges associated with measuring long-term clinical protection warrant the evaluation of immune response kinetics after vaccination. Data from a large phase 2 randomized double-blind clinical trial (PREVAC) were used to evaluate waning of anti-Ebola virus (EBOV) glycoprotein (GP1,2) antibody concentrations after rVSVΔG-ZEBOV-GP or Ad26.ZEBOV, MVA-BN-Filo vaccination with linear mixed-effect regression models. After a post-vaccination peak, each vaccination strategy was associated with a decrease of anti-EBOV GP1,2 antibody concentrations with distinct kinetics, highlighting a less-rapid decline in antibody levels after vaccination by rVSVΔG-ZEBOV-GP. One year after administration of the vaccine, antibody concentrations were higher in children compared to adults for both vaccines, although with different effect sizes: 1.74-fold higher concentrations (95% confidence interval [CI] [1.48; 2.02]) for children 12-17 years old to 3.10-fold higher concentrations (95% CI [2.58; 3.69]) for those 1-4 years old compared to adults for Ad26.ZEBOV, MVA-BN-Filo versus 1.36-fold (95% CI [1.12; 1.61]) to 1.41-fold (95% CI [1.21; 1.62]) higher than these values for adults, with relatively small changes from one age category of children to another, for rVSVΔG-ZEBOV-GP. Antibody concentrations also differed according to geographical location, pre-vaccination antibody concentration, and sex. In combination with knowledge on memory response, characterization of the major determinants of immune response durability of both vaccinations may guide future EVD control protocols.Trial registration: ClinicalTrials.gov identifier: NCT02876328
Recommended from our members
Project Free Our Knowledge: Accelerating progress in academia through collective action
Recommended from our members
Unconf - Designing a register of replicability estimates for published research findings
- …
