2,493 research outputs found

    Economic effects of tax cooperation in an enlarged European Union

    Get PDF
    This study evaluates the economic effects of different scenarios of tax cooperation in the enlarged European Union in the framework of a General Equilibrium Model. The study develops scenarios for a common corporate tax base applicable in all EU Member States, for full harmonisation of tax bases and tax rates, and for the exchange of savings information in the context of personal income taxationEuropean Union, taxation, company taxation

    Company Car Taxation

    Get PDF
    This study presents new, nearly EU wide estimates of the level of subsidies to company cars. In addition, it also provides some preliminary rough illustrations of the possible effects of such subsidies on economic welfare and environment and discusses the policy implications.taxation, car taxation, subsidies, environment

    Active matter clusters at interfaces

    Full text link
    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absense of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.Comment: 15 pages, 7 figure

    Signal transmission through the dark-adapted retina of the toad (Bufo marinus). Gain, convergence, and signal/noise.

    Get PDF
    Responses to light were recorded from rods, horizontal cells, and ganglion cells in dark-adapted toad eyecups. Sensitivity was defined as response amplitude per isomerization per rod for dim flashes covering the excitatory receptive field centers. Both sensitivity and spatial summation were found to increase by one order of magnitude between rods and horizontal cells, and by two orders of magnitude between rods and ganglion cells. Recordings from two hyperpolarizing bipolar cells showed a 20 times response increase between rods and bipolars. At absolute threshold for ganglion cells (Copenhagen, D.R., K. Donner, and T. Reuter. 1987. J. Physiol. 393:667-680) the dim flashes produce 10-50-microV responses in the rods. The cumulative gain exhibited at each subsequent synaptic transfer from the rods to the ganglion cells serves to boost these small amplitude signals to the level required for initiation of action potentials in the ganglion cells. The convergence of rod signals through increasing spatial summation serves to decrease the variation of responses to dim flashes, thereby increasing the signal-to-noise ratio. Thus, at absolute threshold for ganglion cells, the convergence typically increases the maximal signal-to-noise ratio from 0.6 in rods to 4.6 in ganglion cells

    Modulation of a sustained calcium current by intracellular pH in horizontal cells of fish retina.

    Get PDF
    A sustained high voltage-activated (HVA), nifedipine- and cadmium-sensitive calcium current and a sustained calcium action potential (AP) were recorded from horizontal cells isolated from catfish retina. pH indicator dyes showed that superfusion with NH4Cl alkalinized these cells and that washout of NH4Cl or superfusion with Na-acetate acidified them. HVA current was slightly enhanced during superfusion of NH4Cl but was suppressed upon NH4Cl washout or application of Na-acetate. When 25 mM HEPES was added to the patch pipette to increase intracellular pH buffering, the effects of NH4Cl and Na-acetate on HVA current were reduced. These results indicated that intracellular acidification reduces HVA calcium current and alkalinization increases it. Sustained APs, recorded with high resistance, small diameter microelectrodes, were blocked by cobalt and cadmium and their magnitude varied with extracellular calcium concentration. These results provide confirmatory evidence that the HVA current is a major component of the AP and indicate that the AP can be used as a measure of how the HVA current can be modified in intact, undialyzed cells. The duration of APs was increased by superfusion with NH4Cl and reduced by washout of NH4Cl or superfusion with Na-acetate. The Na-acetate and NH4Cl washout-dependent shortening of the APs was observed in the presence of intracellular BAPTA, a calcium chelator, IBMX, a phosphodiesterase inhibitor, and in Na-free or TEA-enriched saline. These findings provide supportive evidence that intracellular acidification may directly suppress the HVA calcium current in intact cells. Intracellular pH changes would thereby be expected to modulate not only the resting membrane potential of these cells in darkness, but calcium-dependent release of neurotransmitter from these cells as well. Furthermore, this acidification-dependent suppression of calcium current could serve a protective role by reducing calcium entry during retinal ischemia, which is usually thought to be accompanied by intracellular acidosis

    Frustration induced phases in migrating cell clusters

    Get PDF
    Collective motion of cells is common in many physiological processes, including tissue development, repair, and tumor formation. Recent experiments have shown that certain malignant cancer cells form clusters in a chemoattractant gradient, which display three different phases of motion: translational, rotational, and random. Intriguingly, all three phases are observed simultaneously, with clusters spontaneously switching between these modes of motion. The origin of this behavior is not understood at present, especially the robust appearance of cluster rotations. Guided by experiments on the motion of two-dimensional clusters in-vitro, we developed an agent based model in which the cells form a cohesive cluster due to attractive and alignment interactions but with potentially different behaviors based on their local environment. We find that when cells at the cluster rim are more motile, all three phases of motion coexist, in excellent agreement with the observations. Using the model we can identify that the transitions between different phases are driven by a competition between an ordered rim and a disordered core accompanied by the creation and annihilation of topological defects in the velocity field. The model makes definite predictions regarding the dependence of the motility phase of the cluster on its size and external chemical gradient, which agree with our experimental data. Our results suggest that heterogeneous behavior of individuals, based on local environment, can lead to novel, experimentally observed phases of collective motion.Comment: 14 pages, 5 figure
    corecore