256 research outputs found

    Применение метода долгосрочного прогнозирования водонефтяного фактора для определения максимально возможного расчётного объёма добычи нефти месторождения "Чёрный Дракон", Вьетнам

    Get PDF
    Objective - Although junctional adhesion molecule-A (JAM-A) has recently been implicated in leukocyte recruitment on early atherosclerotic endothelium and after reperfusion injury, its role in neointima formation after arterial injury remains to be elucidated. Methods and Results - Here we show that the genetic deletion of JAM-A in apolipoprotein E - deficient (apoE(-/-)) mice significantly reduced neointimal hyperplasia after wire injury of carotid arteries without altering medial area. This was associated with a significant decrease in neointimal macrophage content, whereas the relative content of smooth muscle cells and endothelial recovery was unaltered in JAM-A(-/-) apoE(-/-) compared with JAM-A(-/-) apoE(-/-) lesions. In carotid arteries perfused ex vivo, deficiency in JAM-A significantly impaired the recruitment of monocytes 1 week, but not 1 day, after injury. These effects were paralleled by an attenuation of monocyte arrest and transmigration on activated JAM-A(-/-) apoE(-/-) versus JAM-A(-/-) apoE(-/-) endothelial cells under flow conditions in vitro. A mechanism underlying reduced recruitment was implied by findings that the luminal expression of the arrest chemokine RANTES in injured arteries and its endothelial deposition by activated platelets in vitro were diminished by JAM-A deficiency. Conclusions - Our data provide the first evidence to our knowledge for a crucial role of JAM-A in accelerated lesion formation and monocyte infiltration in atherosclerosis-prone mice

    Climacteric Lowers Plasma Levels of Platelet-Derived Microparticles: A Pilot Study in Pre-versus Postmenopausal Women

    Get PDF
    Background: Climacteric increases the risk of thrombotic events by alteration of plasmatic coagulation. Up to now, less is known about changes in platelet-(PMP) and endothelial cell-derived microparticles (EMP). Methods: In this prospective study, plasma levels of microparticles (MP) were compared in 21 premenopausal and 19 postmenopausal women. Results: No altered numbers of total MP or EMP were measured within the study groups. However, the plasma values of CD61-exposing MP from platelets/megakaryocytes were higher in premenopausal women (5,364 x 10(6)/l, range 4,384-17,167) as compared to postmenopausal women (3,808 x 10(6)/l, range 2,009-8,850; p = 0.020). This differentiation was also significant for the subgroup of premenopausal women without hormonal contraceptives (5,364 x 10(6)/l, range 4,223-15,916; p = 0.047; n = 15). Furthermore, in premenopausal women, higher plasma levels of PMP exposing CD62P were also present as compared to postmenopausal women (288 x 10(6)/l, range 139-462, vs. 121 x 10(6)/l, range 74-284; p = 0.024). This difference was also true for CD63+ PMP levels (281 x 10(6)/l, range 182-551, vs. 137 x 10(6)/l, range 64-432; p = 0.015). Conclusion: Climacteric lowers the level of PMP but has no impact on the number of EMP in women. These data suggest that PMP and EMP do not play a significant role in enhancing the risk of thrombotic events in healthy, postmenopausal women. Copyright (C) 2012 S. Karger AG, Base

    Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression

    Get PDF
    Endothelial Wnt/β-catenin signaling is necessary for angiogenesis of the central nervous system and blood–brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/β-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active β-catenin specifically in the endothelium. Enforced endothelial β-catenin signaling restored BBB characteristics, whereas inhibition by Dkk1 (Dickkopf-1) had opposing effects. By overactivating the Wnt pathway, we induced the Wnt/β-catenin–Dll4/Notch signaling cascade in tumor endothelia, blocking an angiogenic and favoring a quiescent vascular phenotype, indicated by induction of stalk cell genes. We show that β-catenin transcriptional activity directly regulated endothelial expression of platelet-derived growth factor B (PDGF-B), leading to mural cell recruitment thereby contributing to vascular quiescence and barrier function. We propose that reinforced Wnt/β-catenin signaling leads to inhibition of angiogenesis with normalized and less permeable vessels, which might prove to be a valuable therapeutic target for antiangiogenic and edema glioma therapy

    Effects of PI and PIII Snake Venom Haemorrhagic Metalloproteinases on the Microvasculature: A Confocal Microscopy Study on the Mouse Cremaster Muscle

    Get PDF
    The precise mechanisms by which Snake Venom Metalloproteinases (SVMPs) disrupt the microvasculature and cause haemorrhage have not been completely elucidated, and novel in vivo models are needed. In the present study, we compared the effects induced by BaP1, a PI SVMP isolated from Bothrops asper venom, and CsH1, a PIII SVMP from Crotalus simus venom, on cremaster muscle microvasculature by topical application of the toxins on isolated tissue (i.e., ex vivo model), and by intra-scrotal administration of the toxins (i.e., in vivo model). The whole tissue was fixed and immunostained to visualize the three components of blood vessels by confocal microscopy. In the ex vivo model, BaP1 was able to degrade type IV collagen and laminin from the BM of microvessels. Moreover, both SVMPs degraded type IV collagen from the BM in capillaries to a higher extent than in PCV and arterioles. CsH1 had a stronger effect on type IV collagen than BaP1. In the in vivo model, the effect of BaP1 on type IV collagen was widespread to the BM of arterioles and PCV. On the other hand, BaP1 was able to disrupt the endothelial barrier in PCV and to increase vascular permeability. Moreover, this toxin increased the size of gaps between pericytes in PCV and created new gaps between smooth muscle cells in arterioles in ex vivo conditions. These effects were not observed in the case of CsH1. In conclusion, our findings demonstrate that both SVMPs degrade type IV collagen from the BM in capillaries in vivo. Moreover, while the action of CsH1 is more directed to the BM of microvessels, the effects of BaP1 are widespread to other microvascular components. This study provides new insights in the mechanism of haemorrhage and other pathological effects induced by these toxins

    Structural control of the non-ionic surfactant alcohol ethoxylates (AEOs) on transport in natural soils

    Get PDF
    Surfactants, after use, enter the environment through diffuse and point sources such as irrigation with treated and non-treated waste water and urban and industrial wastewater discharges. For the group of non-ionic synthetic surfactant alcohol ethoxylates (AEOs), most of the available information is restricted to the levels and fate in aquatic systems, whereas current knowledge of their behavior in soils is very limited. Here we characterize the behavior of different homologs (C12-C18) and ethoxymers (E03, E06, and E08) of the AEOs through batch experiments and under unsaturated flow conditions during infiltration experiments. Experiments used two different agricultural soils from a region irrigated with reclaimed water (Guadalete River basin, SW Spain). In parallel, water flow and chemical transport were modelled using the HYDRUS-1D software package, calibrated using the infiltration experimental data. Estimates of water flow and reactive transport of all surfactants were in good agreement between infiltration experiments and simulations. The sorption process followed a Freundlich isotherm for most of the target compounds. A systematic comparison between sorption data obtained from batch and infiltration experiments revealed that the sorption coefficient (K-d) was generally lower in infiltration experiments, performed under environmental flow conditions, than in batch experiments in the absence of flow, whereas the exponent (beta) did not show significant differences. For the low clay and organic carbon content of the soils used, no clear dependence of K-d on them was observed. Our work thus highlights the need to use reactive transport parameterization inferred under realistic conditions to assess the risk associated with alcohol ethoxylates in subsurface environments. (C) 2020 The Authors. Published by Elsevier Ltd

    Functionally specialized junctions between endothelial cells of lymphatic vessels

    Get PDF
    Recirculation of fluid and cells through lymphatic vessels plays a key role in normal tissue homeostasis, inflammatory diseases, and cancer. Despite recent advances in understanding lymphatic function (Alitalo, K., T. Tammela, and T.V. Petrova. 2005. Nature. 438:946–953), the cellular features responsible for entry of fluid and cells into lymphatics are incompletely understood. We report the presence of novel junctions between endothelial cells of initial lymphatics at likely sites of fluid entry. Overlapping flaps at borders of oak leaf–shaped endothelial cells of initial lymphatics lacked junctions at the tip but were anchored on the sides by discontinuous button-like junctions (buttons) that differed from conventional, continuous, zipper-like junctions (zippers) in collecting lymphatics and blood vessels. However, both buttons and zippers were composed of vascular endothelial cadherin (VE-cadherin) and tight junction–associated proteins, including occludin, claudin-5, zonula occludens–1, junctional adhesion molecule–A, and endothelial cell–selective adhesion molecule. In C57BL/6 mice, VE-cadherin was required for maintenance of junctional integrity, but platelet/endothelial cell adhesion molecule–1 was not. Growing tips of lymphatic sprouts had zippers, not buttons, suggesting that buttons are specialized junctions rather than immature ones. Our findings suggest that fluid enters throughout initial lymphatics via openings between buttons, which open and close without disrupting junctional integrity, but most leukocytes enter the proximal half of initial lymphatics

    Rainfall and PM Removal on Tree Leaves: A Study of Santiago, Chile’s Native Species

    Get PDF
    Green infrastructure, such as street trees, can help improve air quality, but the role of rainfall in cleaning total particulate matter (TPM) from tree leaves is not well understood, especially in cities like Santiago, Chile. This study measured TPM deposited on leaves and its elemental composition of two native tree species, Quillaja saponaria and Schinus molle, by five independent rainfall episodes. The results showed significant differences in how each tree species responded to rainfall. The total amount of TPM finally removed or retained at the leaf level in the five rainfall events studied was 4.72 and 8.43 mg/gldw for Q. saponaria and S. molle, respectively. Q. saponaria decreased TPM levels after rainfall, while S. molle exhibited mixed responses, increasing or decreasing TPM accumulation on leaves after different intensities of rainfalls. Elemental analysis revealed metals such as lithium and nickel—potentially linked to electric vehicle batteries—and tin and antimony–potentially linked to industrial processes. Rainfall benefited air quality by removing heavy metals from the atmosphere and aiding plant recovery from TPM accumulation. However, further research is needed on metal speciation in TPM and its foliar uptake by plants. This study provides some insights into the complex interactions between trees leaves, TPM deposition, and rainfall

    Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression

    Get PDF
    Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A−/− tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target
    corecore