600 research outputs found
Quantum plasmonic waveguides: Au nanowires
Combining miniaturization and good operating speed is a compelling yet
crucial task for our society. Plasmonic waveguides enable the possibility of
carrying information at optical operating speed while maintaining the dimension
of the device in the nanometer range. Here we present a theoretical study of
plasmonic waveguides extending our investigation to structures so small that
Quantum Size Effects (QSE) become non negligible, namely quantum plasmonic
waveguides. Specifically, we demonstrate and evaluate a blue-shift in Surface
Plasmon (SP) resonance energy for an ultra-thin gold nanowire
A promising new ELISA diagnostic test for cattle babesiosis based on Babesia bigemina Apical Membrane Antigen-1.
Babesiosis due to Babesia bigemina is a relevant tick‑borne disease, affecting cattle worldwide. Many surface proteins of the pathogen including the Apical Membrane Antigen 1 (AMA‑1) ‑ have been analysed for vaccine and diagnostic purposes. This study focused on B. bigemina AMA‑1 and on its use for the assessment of diagnostic tests. After bioinformatic analyses, AMA‑1 codifying region was amplified and cloned into an expression vector used to induce protein synthesis in Escherichia coli cells. AMA‑1 was purified by affinity chromatography and used to set up the best condition for an ELISA protocol. Bovine field sera positive to B. bigemina were used to evaluate the presence of anti‑AMA‑1 antibodies. In order to verify the assay specificity, sera positive to Babesia bovis or to the piroplasm Theileria annulata were also included. Significant differences were obtained between sera negative to both B. bigemina and B. bovis and samples positive to B. bigemina, to B. bovis or to both pathogens. No significant reaction was observed with T. annulata positive sera. The results showed that AMA‑1 protein is suitable to be used as antigen in diagnostic assays for babesiosis diagnosis in cattle, as it does not show any cross reaction with anti-T. annulata antibodies
Gevrey local solvability in locally integrable structures
We consider a locally integrable real-analytic structure, and we investigate
the local solvability in the category of Gevrey functions and
ultradistributions of the complex d' naturally induced by the de Rham complex.
We prove that the so-called condition Y(q) on the signature of the Levi form,
for local solvability of d' u=f, is still necessary even if we take f in the
classes of Gevrey functions and look for solutions u in the corresponding
spaces of ultradistributions.Comment: 12 page
Effect of synthetic route on performance of La0.8Sr1.2Fe0.9Cu0.1O4±δ electrodes for symmetric solid oxides fuel cells
The solid oxide La0.8Sr1.2Fe0.9Cu0.1O4±δ of interest as electrode for Symmetric Solid Oxide Fuel Cells (SSOFCs) has been prepared via three different synthetic methods: solid-state reaction (SSR), melt citrate route (MC) and co-precipitation (CoP). In order to determine advantages and drawbacks of each synthesis, the materials have been characterized by X-Ray Powder Diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis. Phase purity, structural and morphological characteristics of the powders have been determined. Wet chemical methods (CIT and COP) have the advantage over SSR synthesis of yielding small-sized powders (â\u88¼1mu;m); moreover, melt citrate route allows lowering the preparation temperature down to 1000 °C. Electrochemical characterization was performed by Electrochemical Impedance Spectroscopy (EIS) in air in an electrolyte supported symmetric cells configuration. Preliminary results allow to draw some conclusions on the relation between the structural and microstructural characteristics of the powders and the electrochemical performance
N=8 BPS Black Holes with 1/2 or 1/4 Supersymmetry and Solvable Lie Algebra Decompositions
In the context of N=8 supergravity we construct the general form of BPS
0--branes that preserve either 1/2 or 1/4 of the original supersymmetry. We
show how such solutions are related to suitable decompositions of the 70
dimensional solvable Lie algebra that describes the scalar field sector. We
compare our new results to those obtained in a previous paper for the case of
1/8 supersymmetry preserving black holes. Each of the three cases is based on a
different solvable Lie algebra decomposition and leads to a different structure
of the scalar field evolution and of their fixed values at the horizon of the
black hole.Comment: first section restructured, typos corrected, 1 LaTeX file, 37 pages,
2 eps-figure
Domain walls and instantons in N=1, d=4 supergravity
We study the supersymmetric sources of (multi-) domain-wall and (multi-)
instanton solutions of generic N=1, d=4 supergravities, that is: the
worldvolume effective actions for said supersymmetric topological defects. The
domain-wall solutions naturally couple to the two 3-forms recently found as
part of the N=1, d=4 tensor hierarchy (i.e. they have two charges in general)
and their tension is the absolute value of the superpotential section L. The
introduction of sources (we study sources with finite and vanishing thickness)
is equivalent to the introduction of local coupling constants and results in
dramatic changes of the solutions. Our results call for a democratic
reformulation of N=1,d=4 supergravity in which coupling constants are,
off-shell, scalar fields. The effective actions for the instantons are always
proportional to the coordinate orthogonal to the twist-free embedding of the
null-geodesic (in the Wick-rotated scalar manifold) describing the instanton.
We show their supersymmetry and find the associated supersymmetric (multi-)
instanton solutions.Comment: 34 pages, 4 figures, references adde
The general gaugings of maximal d=9 supergravity
We use the embedding tensor method to construct the most general maximal
gauged/massive supergravity in d=9 dimensions and to determine its extended
field content. Only the 8 independent deformation parameters (embedding tensor
components, mass parameters etc.) identified by Bergshoeff \textit{et al.} (an
SL(2,R) triplet, two doublets and a singlet can be consistently introduced in
the theory, but their simultaneous use is subject to a number of quadratic
constraints. These constraints have to be kept and enforced because they cannot
be used to solve some deformation parameters in terms of the rest. The
deformation parameters are associated to the possible 8-forms of the theory,
and the constraints are associated to the 9-forms, all of them transforming in
the conjugate representations. We also give the field strengths and the gauge
and supersymmetry transformations for the electric fields in the most general
case. We compare these results with the predictions of the E11 approach,
finding that the latter predicts one additional doublet of 9-forms, analogously
to what happens in N=2, d=4,5,6 theories.Comment: Latex file, 43 pages, reference adde
The Tensor Hierarchies of Pure N=2,d=4,5,6 Supergravities
We study the supersymmetric tensor hierarchy of pure (gauged) N=2,d=4,5,6
supergravity and compare them with those of the pure, ungauged, theories
(worked out by Gomis and Roest for d=5) and the predictions of the Kac-Moody
approach made by Kleinschmidt and Roest. We find complete agreement in the
ungauged case but we also find that, after gauging, new Stueckelberg symmetries
reduce the number of independent "physical" top-forms. The analysis has to be
performed to all orders in fermion fields.
We discuss the construction of the worldvolume effective actions for the
p-branes which are charged with respect to the (p+1)-form potentials and the
relations between the tensor hierarchies and p-branes upon dimensional
reduction.Comment: LaTeX2e file, 20 pages, 1 figure Results refined by extension of the
analysis to all orders in fermion
- …
