281 research outputs found
Calabi-Yau Orbifolds and Torus Coverings
The theory of coverings of the two-dimensional torus is a standard part of
algebraic topology and has applications in several topics in string theory, for
example, in topological strings. This paper initiates applications of this
theory to the counting of orbifolds of toric Calabi-Yau singularities, with
particular attention to Abelian orbifolds of C^D. By doing so, the work
introduces a novel analytical method for counting Abelian orbifolds, verifying
previous algorithm results. One identifies a p-fold cover of the torus T^{D-1}
with an Abelian orbifold of the form C^D/Z_p, for any dimension D and a prime
number p. The counting problem leads to polynomial equations modulo p for a
given Abelian subgroup of S_D, the group of discrete symmetries of the toric
diagram for C^D. The roots of the polynomial equations correspond to orbifolds
of the form C^D/Z_p, which are invariant under the corresponding subgroup of
S_Ds. In turn, invariance under this subgroup implies a discrete symmetry for
the corresponding quiver gauge theory, as is clearly seen by its brane tiling
formulation.Comment: 33 pages, 5 figures, 7 tables; version published on JHE
Binary Population Synthesis: Methods, Normalization, and Surprises
In this paper we present a brief overview of population synthesis methods
with a discussion of their main advantages and disadvantages. In the second
part, we present some recent results from synthesis models of close binary
compact objects with emphasis on the predicted rates, their uncertainties, and
the model input parameters the rates are most sensitive to. We also report on a
new evolutionary path leading to the formation of close double neutron stars
(NS), with the unique characteristic that none of the two NS ever had the
chance to be recycled by accretion. Their formation rates turn out to be
comparable to or maybe even higher than those of recycled NS-NS binaries (like
the ones observed), but their detection probability as binary pulsars is much
smaller because of their short lifetimes. We discuss the implications of such a
population for gravitational-wave detection of NS-NS inspiral events, and
possibly for gamma-ray bursts and their host galaxies.Comment: 15 pages, 1 figure, to appear in the proceedings ``The influence of
binaries on stellar population studies'', Brussels, August 2000 (Kluwer
Academic Publishers), ed. D.Vanbevere
Emergent complex neural dynamics
A large repertoire of spatiotemporal activity patterns in the brain is the
basis for adaptive behaviour. Understanding the mechanism by which the brain's
hundred billion neurons and hundred trillion synapses manage to produce such a
range of cortical configurations in a flexible manner remains a fundamental
problem in neuroscience. One plausible solution is the involvement of universal
mechanisms of emergent complex phenomena evident in dynamical systems poised
near a critical point of a second-order phase transition. We review recent
theoretical and empirical results supporting the notion that the brain is
naturally poised near criticality, as well as its implications for better
understanding of the brain
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
Summary
Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types
Spirals of Spirituality: A Qualitative Study Exploring Dynamic Patterns of Spirituality in Turkish Organizations
This paper explores organizational spirituality, uncovers it as spiralling dynamics of both positive and negative potentialities, and proposes how leaders can shape these dynamics to improve the human conditions at the workplace. Based on case study of five Turkish organizations and drawing on the emerging discourse on spirituality in organizations literature, this study provides a deeper understanding of how dynamic patterns of spirituality operate in organizations. Insights from participant observation, organizational data, and semi-structured interviews yield three key themes of organizational spirituality: reflexivity, connectivity, and responsibility. Each of these themes has been found to be connected to upward spirals (inspiration, engagement, and calling) and downward spirals (incivility, silence, and fatigue). The study provides a detailed and holistic account of the individual and organizational processes through which spirituality is enacted both positively and negatively, exploring its dynamic and dualistic nature, as embodied in the fabric of everyday life and culture
Ligand Bound β1 Integrins Inhibit Procaspase-8 for Mediating Cell Adhesion-Mediated Drug and Radiation Resistance in Human Leukemia Cells
BACKGROUND: Chemo- and radiotherapeutic responses of leukemia cells are modified by integrin-mediated adhesion to extracellular matrix. To further characterize the molecular mechanisms by which β1 integrins confer radiation and chemoresistance, HL60 human acute promyelocytic leukemia cells stably transfected with β1 integrin and A3 Jurkat T-lymphoma cells deficient for Fas-associated death domain protein or procaspase-8 were examined. METHODOLOGY/PRINCIPAL FINDINGS: Upon exposure to X-rays, Ara-C or FasL, suspension and adhesion (fibronectin (FN), laminin, collagen-1; 5–100 µg/cm(2) coating concentration) cultures were processed for measurement of apoptosis, mitochondrial transmembrane potential (MTP), caspase activation, and protein analysis. Overexpression of β1 integrins enhanced the cellular sensitivity to X-rays and Ara-C, which was counteracted by increasing concentrations of matrix proteins in association with reduced caspase-3 and -8 activation and MTP breakdown. Usage of stimulatory or inhibitory anti β1 integrin antibodies, pharmacological caspase or phosphatidylinositol-3 kinase (PI3K) inhibitors, coprecipitation experiments and siRNA-mediated β1 integrin silencing provided further data showing an interaction between FN-ligated β1 integrin and PI3K/Akt for inhibiting procaspase-8 cleavage. CONCLUSIONS/SIGNIFICANCE: The presented data suggest that the ligand status of β1 integrins is critical for their antiapoptotic effect in leukemia cells treated with Ara-C, FasL or ionizing radiation. The antiapoptotic actions involve formation of a β1 integrin/Akt complex, which signals to prevent procaspase-8-mediated induction of apoptosis in a PI3K-dependent manner. Antagonizing agents targeting β1 integrin and PI3K/Akt signaling in conjunction with conventional therapies might effectively reduce radiation- and drug-resistant tumor populations and treatment failure in hematological malignancies
Integrated genomic characterization of oesophageal carcinoma
Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.ope
Irradiation differentially affects substratum-dependent survival, adhesion, and invasion of glioblastoma cell lines
Ontogeny of Numerical Abilities in Fish
Background: It has been hypothesised that human adults, infants, and non-human primates share two non-verbal systems for enumerating objects, one for representing precisely small quantities (up to 3–4 items) and one for representing approximately larger quantities. Recent studies exploiting fish’s spontaneous tendency to join the larger group showed that their ability in numerical discrimination closely resembles that of primates but little is known as to whether these capacities are innate or acquired. Methodology/Principal Findings: We used the spontaneous tendency to join the larger shoal to study the limits of the quantity discrimination of newborn and juvenile guppies. One-day old fish chose the larger shoal when the choice was between numbers in the small quantity range, 2 vs. 3 fish, but not when they had to choose between large numbers, 4 vs. 8 or 4 vs. 12, although the numerical ratio was larger in the latter case. To investigate the relative role of maturation and experience in large number discrimination, fish were raised in pairs (with no numerical experience) or in large social groups and tested at three ages. Forty-day old guppies from both treatments were able to discriminate 4 vs. 8 fish while at 20 days this was only observed in fish grown in groups. Control experiments showed that these capacities were maintained after guppies were prevented from using non numerical perceptual variables that co-vary with numerosity. Conclusions/Significance: Overall, our results suggest the ability of guppies to discriminate small numbers is innate and i
- …
