694 research outputs found
Photoproduction of phi(1020) mesons on the proton at large momentum transfer
The cross section for meson photoproduction on the proton has been
measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using
the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low
four-momentum transfer, the differential cross section is well described by
Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the
data support a model where the Pomeron is resolved into its simplest component,
two gluons, which may couple to any quark in the proton and in the .Comment: 5 pages; 7 figure
Measurement of Inclusive Spin Structure Functions of the Deuteron
We report the results of a new measurement of spin structure functions of the
deuteron in the region of moderate momentum transfer ( = 0.27 -- 1.3
(GeV/c)) and final hadronic state mass in the nucleon resonance region (
= 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam
at Jefferson Lab off a dynamically polarized cryogenic solid state target
(ND) and detected the scattered electrons with the CEBAF Large
Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal
double spin asymmetry and the spin structure function . Our
data are generally in reasonable agreement with existing data from SLAC where
they overlap, and they represent a substantial improvement in statistical
precision. We compare our results with expectations for resonance asymmetries
and extrapolated deep inelastic scaling results. Finally, we evaluate the first
moment of the structure function and study its approach to both the
deep inelastic limit at large and to the Gerasimov-Drell-Hearn sum rule
at the real photon limit (). We find that the first moment varies
rapidly in the range of our experiment and crosses zero at between
0.5 and 0.8 (GeV/c), indicating the importance of the resonance at
these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys.
Rev.
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured using the reaction in the
resonance region at and 0.65 GeV. No previous
data exist for this reaction channel. The kinematically
complete experiment was performed at Jefferson Lab with the CEBAF Large
Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an
energy of 1.515 GeV. A partial wave analysis of the data shows generally better
agreement with recent phenomenological models of pion electroproduction
compared to the previously measured channel. A fit to both
and channels using a unitary isobar model suggests the unitarized
Born terms provide a consistent description of the non-resonant background. The
-channel pion pole term is important in the channel through a
rescattering correction, which could be model-dependent.Comment: 6 pages, LaTex, 5 eps figures: Submitted to PRC/Brief Reports v2:
Updated referenc
Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction
New cross sections for the reaction are reported for total
center of mass energy =1.5--2.3 GeV and invariant squared momentum transfer
=0.13--3.3 GeV. This large kinematic range allows extraction of new
information about response functions, photocouplings, and coupling
strengths of baryon resonances. A sharp structure is seen at 1.7 GeV.
The shape of the differential cross section is indicative of the presence of a
-wave resonance that persists to high . Improved values are derived for
the photon coupling amplitude for the (1535) resonance. The new data
greatly expands the range covered and an interpretation of all data with
a consistent parameterization is provided.Comment: 31 pages, 9 figure
Observation of exclusive DVCS in polarized electron beam asymmetry measurements
We report the first results of the beam spin asymmetry measured in the
reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry
with a sin(phi) modulation is observed, as predicted for the interference term
of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The
amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and
leading-twist pQCD, the alpha is directly proportional to the imaginary part of
the DVCS amplitude.Comment: 6 pages, 5 figure
A Precise Measurement of the Neutron Magnetic Form Factor GMn in the Few-GeV2 Region
The neutron elastic magnetic form factor GMn has been extracted from
quasielastic electron scattering data on deuterium with the CEBAF Large
Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the
measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was
achieved by employing a ratio technique in which many uncertainties cancel, and
by a simultaneous in-situ calibration of the neutron detection efficiency, the
largest correction to the data. Neutrons were detected using the CLAS
electromagnetic calorimeters and the time-of-flight scintillators. Data were
taken at two different electron beam energies, allowing up to four
semi-independent measurements of GMn to be made at each value of Q2. The dipole
parameterization is found to provide a good description of the data over the
measured Q2 range.Comment: 14 pages, 5 figures, revtex4, submitted to Physical Review Letters,
Revised version has changes recommended by journal referee
Electroproduction of mesons at GeV measured with the CLAS spectrometer
Electroproduction of exclusive vector mesons has been studied with the
CLAS detector in the kinematical range GeV,
GeV, and GeV. The
scaling exponent for the total cross section as was
determined to be . The slope of the four-momentum transfer
distribution is GeV. Under the assumption of
s-channel helicity conservation (SCHC), we determine the ratio of longitudinal
to transverse cross sections to be . A 2-gluon exchange model
is able to reproduce the main features of the data.Comment: Phys Rev C, 15 pages, 18 figure
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
Onset of asymptotic scaling in deuteron photodisintegration
We investigate the transition from the nucleon-meson to quark-gluon
description of the strong interaction using the photon energy dependence of the
differential cross section for photon energies above 0.5 GeV and
center-of-mass proton angles between and . A possible
signature for this transition is the onset of cross section scaling
with the total energy squared, , at some proton transverse momentum, .
The results show that the scaling has been reached for proton transverse
momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime
is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure
Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic
range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c)
peaks where two nucleons each have 20% or less, and the third nucleon has most
of the transferred energy. These fast pp and pn pairs are back-to-back with
little momentum along the three-momentum transfer, indicating that they are
spectators. Experimental and theoretical evidence indicates that we have
measured distorted two-nucleon momentum distributions by striking the third
nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
- …
