17,937 research outputs found

    Alexander v. Sandoval: Why a Supreme Court Case About Driver\u27s Licenses Matters to Environmental Justice Advocates

    Get PDF
    Environmental justice litigants have used federal courts to challenge actions on the part of federal fund recipients that have a disparate impact, regardless of intent. In the environmental justice context, it is nearly impossible to provide evidence of discriminatory intent. Unfortunately, the federal courts have all but eliminated a private right of action to enforce violations of federal agency regulations enacted pursuant to Title VI of the Civil Rights Act of 1964 that prohibit such an impact. It is plain that the courts will not imply a private right of action to enforce these regulations. The question remains whether litigants may use an alternative enforcement mechanism, 42 U.S.C. 1983, to sue for violations of their Title VI rights. The answer is not simple because the purported rights are regulatory, and the current Supreme Court has made clear that evidence of congressional intent is required

    Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass, Zostera marina.

    Get PDF
    Ecological studies often assume that genetically similar individuals will be more similar in phenotypic traits, such that genetic diversity can serve as a proxy for trait diversity. Here, we explicitly test the relationship between genetic relatedness and trait distance using 40 eelgrass (Zostera marina) genotypes from five sites within Bodega Harbor, CA. We measured traits related to nutrient uptake, morphology, biomass and growth, photosynthesis, and chemical deterrents for all genotypes. We used these trait measurements to calculate a multivariate pairwise trait distance for all possible genotype combinations. We then estimated pairwise relatedness from 11 microsatellite markers. We found significant trait variation among genotypes for nearly every measured trait; however, there was no evidence of a significant correlation between pairwise genetic relatedness and multivariate trait distance among individuals. However, at the subpopulation level (sites within a harbor), genetic (FST) and trait differentiation were positively correlated. Our work suggests that pairwise relatedness estimated from neutral marker loci is a poor proxy for trait differentiation between individual genotypes. It remains to be seen whether genomewide measures of genetic differentiation or easily measured "master" traits (like body size) might provide good predictions of overall trait differentiation

    Experimental inhibition of a key cellular antioxidant affects vocal communication

    Get PDF
    1. There is substantial interest of evolutionary ecologists in the proximate mechanisms that modulate vocal communication. In recent times, there has been growing interest in the role of oxidative stress as a mediator of avian song expression. 2. Here, we tested whether the experimental inhibition of the synthesis of a key cellular antioxidant (glutathione) reduces song rate metrics of male European starlings (Sturnus vulgaris). We measured the effect of our treatment on total song rate and on its two components, undirected and nest-box-oriented song, outside the breeding season. 3. Treated males that did not own a nest-box (subordinate males likely to be of lower quality) suffered increased oxidative stress relative to untreated males, while treated males that owned a nest-box (dominant males likely to be of higher quality) did not. Treated non-owners also reduced their undirected song rate, whereas treated nest-box owners did not suffer any reduction in song rate. 4. Our results revealed that inhibition of a key cellular antioxidant results in decreased vocal communication in a social vertebrate, and that this effect is dependent on its social status (nest-box owner vs. non-owner). 5. This work provides support for the hypothesis that acoustic signals may honestly convey information about the individual oxidative status and capacity to regulate the oxidative balance. Our findings raise the possibility of hitherto unexplored impacts of oxidative stress on fitness traits in social species

    Polling bias and undecided voter allocations: US Presidential elections, 2004 - 2016

    Full text link
    Accounting for undecided and uncertain voters is a challenging issue for predicting election results from public opinion polls. Undecided voters typify the uncertainty of swing voters in polls but are often ignored or allocated to each candidate in a simple, deterministic manner. Historically this may have been adequate because the undecided were comparatively small enough to assume that they do not affect the relative proportions of the decided voters. However, in the presence of high numbers of undecided voters, these static rules may in fact bias election predictions from election poll authors and meta-poll analysts. In this paper, we examine the effect of undecided voters in the 2016 US presidential election to the previous three presidential elections. We show there were a relatively high number of undecided voters over the campaign and on election day, and that the allocation of undecided voters in this election was not consistent with two-party proportional (or even) allocations. We find evidence that static allocation regimes are inadequate for election prediction models and that probabilistic allocations may be superior. We also estimate the bias attributable to polling agencies, often referred to as "house effects".Comment: 32 pages, 9 figures, 6 table

    Directional genetic differentiation and asymmetric migration

    Get PDF
    Understanding the population structure and patterns of gene flow within species is of fundamental importance to the study of evolution. In the fields of population and evolutionary genetics, measures of genetic differentiation are commonly used to gather this information. One potential caveat is that these measures assume gene flow to be symmetric. However, asymmetric gene flow is common in nature, especially in systems driven by physical processes such as wind or water currents. Since information about levels of asymmetric gene flow among populations is essential for the correct interpretation of the distribution of contemporary genetic diversity within species, this should not be overlooked. To obtain information on asymmetric migration patterns from genetic data, complex models based on maximum likelihood or Bayesian approaches generally need to be employed, often at great computational cost. Here, a new simpler and more efficient approach for understanding gene flow patterns is presented. This approach allows the estimation of directional components of genetic divergence between pairs of populations at low computational effort, using any of the classical or modern measures of genetic differentiation. These directional measures of genetic differentiation can further be used to calculate directional relative migration and to detect asymmetries in gene flow patterns. This can be done in a user-friendly web application called divMigrate-online introduced in this paper. Using simulated data sets with known gene flow regimes, we demonstrate that the method is capable of resolving complex migration patterns under a range of study designs.Comment: 25 pages, 8 (+3) figures, 1 tabl

    Horseshoe-based Bayesian nonparametric estimation of effective population size trajectories

    Full text link
    Phylodynamics is an area of population genetics that uses genetic sequence data to estimate past population dynamics. Modern state-of-the-art Bayesian nonparametric methods for recovering population size trajectories of unknown form use either change-point models or Gaussian process priors. Change-point models suffer from computational issues when the number of change-points is unknown and needs to be estimated. Gaussian process-based methods lack local adaptivity and cannot accurately recover trajectories that exhibit features such as abrupt changes in trend or varying levels of smoothness. We propose a novel, locally-adaptive approach to Bayesian nonparametric phylodynamic inference that has the flexibility to accommodate a large class of functional behaviors. Local adaptivity results from modeling the log-transformed effective population size a priori as a horseshoe Markov random field, a recently proposed statistical model that blends together the best properties of the change-point and Gaussian process modeling paradigms. We use simulated data to assess model performance, and find that our proposed method results in reduced bias and increased precision when compared to contemporary methods. We also use our models to reconstruct past changes in genetic diversity of human hepatitis C virus in Egypt and to estimate population size changes of ancient and modern steppe bison. These analyses show that our new method captures features of the population size trajectories that were missed by the state-of-the-art methods.Comment: 36 pages, including supplementary informatio

    Optimizing passive acoustic sampling of bats in forests

    Get PDF
    Passive acoustic methods are increasingly used in biodiversity research and monitoring programs because they are cost-effective and permit the collection of large datasets. However, the accuracy of the results depends on the bioacoustic characteristics of the focal taxa and their habitat use. In particular, this applies to bats which exhibit distinct activity patterns in three-dimensionally structured habitats such as forests. We assessed the performance of 21 acoustic sampling schemes with three temporal sampling patterns and seven sampling designs. Acoustic sampling was performed in 32 forest plots, each containing three microhabitats: forest ground, canopy, and forest gap. We compared bat activity, species richness, and sampling effort using species accumulation curves fitted with the clench equation. In addition, we estimated the sampling costs to undertake the best sampling schemes. We recorded a total of 145,433 echolocation call sequences of 16 bat species. Our results indicated that to generate the best outcome, it was necessary to sample all three microhabitats of a given forest location simultaneously throughout the entire night. Sampling only the forest gaps and the forest ground simultaneously was the second best choice and proved to be a viable alternative when the number of available detectors is limited. When assessing bat species richness at the 1-km(2) scale, the implementation of these sampling schemes at three to four forest locations yielded highest labor cost-benefit ratios but increasing equipment costs. Our study illustrates that multiple passive acoustic sampling schemes require testing based on the target taxa and habitat complexity and should be performed with reference to cost-benefit ratios. Choosing a standardized and replicated sampling scheme is particularly important to optimize the level of precision in inventories, especially when rare or elusive species are expected

    "How May I Help You?": Modeling Twitter Customer Service Conversations Using Fine-Grained Dialogue Acts

    Full text link
    Given the increasing popularity of customer service dialogue on Twitter, analysis of conversation data is essential to understand trends in customer and agent behavior for the purpose of automating customer service interactions. In this work, we develop a novel taxonomy of fine-grained "dialogue acts" frequently observed in customer service, showcasing acts that are more suited to the domain than the more generic existing taxonomies. Using a sequential SVM-HMM model, we model conversation flow, predicting the dialogue act of a given turn in real-time. We characterize differences between customer and agent behavior in Twitter customer service conversations, and investigate the effect of testing our system on different customer service industries. Finally, we use a data-driven approach to predict important conversation outcomes: customer satisfaction, customer frustration, and overall problem resolution. We show that the type and location of certain dialogue acts in a conversation have a significant effect on the probability of desirable and undesirable outcomes, and present actionable rules based on our findings. The patterns and rules we derive can be used as guidelines for outcome-driven automated customer service platforms.Comment: 13 pages, 6 figures, IUI 201

    Winter Conditions Influence Biological Responses of Migrating Hummingbirds

    Full text link
    Conserving biological diversity given ongoing environmental changes requires the knowledge of how organisms respond biologically to these changes; however, we rarely have this information. This data deficiency can be addressed with coordinated monitoring programs that provide field data across temporal and spatial scales and with process-based models, which provide a method for predicting how species, in particular migrating species that face different conditions across their range, will respond to climate change. We evaluate whether environmental conditions in the wintering grounds of broad-tailed hummingbirds influence physiological and behavioral attributes of their migration. To quantify winter ground conditions, we used operative temperature as a proxy for physiological constraint, and precipitation and the normalized difference vegetation index (NDVI) as surrogates of resource availability. We measured four biological response variables: molt stage, timing of arrival at stopover sites, body mass, and fat. Consistent with our predictions, we found that birds migrating north were in earlier stages of molt and arrived at stopover sites later when NDVI was low. These results indicate that wintering conditions impact the timing and condition of birds as they migrate north. In addition, our results suggest that biologically informed environmental surrogates provide a valuable tool for predicting how climate variability across years influences the animal populations
    corecore