149 research outputs found

    Functional Analysis of Phagocyte Activity in Whole Blood from HIV/Tuberculosis-Infected Individuals Using a Novel Flow Cytometry-Based Assay.

    Get PDF
    The accurate assessment of immune competence through ex vivo analysis is paramount to our understanding of those immune mechanisms that lead to protection or susceptibility against a broad range of human pathogens. We have developed a flow cytometry-based, whole blood phagocyte functional assay that utilizes the inflammatory inducer zymosan, coupled to OxyBURST-SE, a fluorescent reporter of phagosomal oxidase activity. The assay measures both phagocytic uptake and the superoxide burst in the phagocyte populations in whole blood. We utilized this assay to demonstrate impaired superoxide burst activity in the phagocytes of hospitalized HIV-positive patients with laboratory-confirmed tuberculosis. These data validate the use of the assay to assess the immune competence of patients in a clinical setting. The method is highly reproducible with minimal intraindividual variation and opens opportunities for the rapid assessment of cellular immune competence in peripheral blood in a disease setting

    Malcolm McKinnon: Asian Cities: Globalization, Urbanization and Nation-Building

    Get PDF

    Tobacco smoke exposure results in recruitment of inflammatory airspace monocytes and accelerated growth ofMycobacterium tuberculosis: [Preprint]

    Get PDF
    Tobacco smoking doubles the risk of active tuberculosis (TB) and accounts for up to 20% of all active TB cases globally. How smoking promotes lung microenvironments permissive to Mycobacterium tuberculosis (Mtb) growth remains incompletely understood. We investigated primary bronchoalveolar lavage cells from current- and never-smokers by performing single-cell RNA-sequencing (scRNA-seq), flow cytometry, and functional assays. We observed enrichment of immature inflammatory monocytes in the lungs of smokers compared to non-smokers. These monocytes exhibited phenotypes consistent with recent recruitment from blood, ongoing differentiation, increased activation, and states similar to those with chronic obstructive pulmonary disease (COPD). Using integrative scRNA-seq and flow cytometry, we identify CD93 as a marker for a subset of these newly recruited smoking-associated lung monocytes and further provide evidence that recruitment of monocytes into the lung is mediated by CCL11 binding to CCR2. We also show that these cells exhibit elevated inflammatory responses upon exposure to Mtb and accelerated intracellular growth of Mtb compared to mature macrophages. This elevated Mtb growth could be inhibited with an anti-inflammatory small molecule, providing a direct connection between smoking-induced pro-inflammatory states and permissiveness to Mtb growth. Our findings suggest a model in which smoking leads to recruitment of immature inflammatory monocytes from the periphery to the lung via CCL11-CCR2 interactions, which results in the accumulation of these Mtb permissive cells in the airway. This work defines how smoking may lead to increased susceptibility to Mtb and identifies novel host-directed therapies to reduce the burden of TB among those who smoke

    CVnCoV protects human ACE2 transgenic mice from ancestral B BavPat1 and emerging B.1.351 SARS-CoV-2: [Preprint]

    Get PDF
    The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic necessitates the fast development of vaccines as the primary control option. Recently, viral mutants termed "variants of concern" (VOC) have emerged with the potential to escape host immunity. VOC B.1.351 was first discovered in South Africa in late 2020, and causes global concern due to poor neutralization with propensity to evade preexisting immunity from ancestral strains. We tested the efficacy of a spike encoding mRNA vaccine (CVnCoV) against the ancestral strain BavPat1 and the novel VOC B.1.351 in a K18-hACE2 transgenic mouse model. Naive mice and mice immunized with formalin-inactivated SARS-CoV-2 preparation were used as controls. mRNA-immunized mice developed elevated SARS-CoV-2 RBD-specific antibody as well as neutralization titers against the ancestral strain BavPat1. Neutralization titers against VOC B.1.351 were readily detectable but significantly reduced compared to BavPat1. VOC B.1.351-infected control animals experienced a delayed course of disease, yet nearly all SARS-CoV-2 challenged naive mice succumbed with virus dissemination and high viral loads. CVnCoV vaccine completely protected the animals from disease and mortality caused by either viral strain. Moreover, SARS-CoV-2 was not detected in oral swabs, lung, or brain in these groups. Only partial protection was observed in mice receiving the formalin-inactivated virus preparation. Despite lower neutralizing antibody titers compared to the ancestral strain BavPat1, CVnCoV shows complete disease protection against the novel VOC B.1.351 in our studies

    High protection and transmission-blocking immunity elicited by single-cycle SARS-CoV-2 vaccine in hamsters

    Get PDF
    Vaccines have played a central role in combating the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants are increasingly evading first-generation vaccine protection. To address this challenge, we designed “single-cycle infection SARS-CoV-2 viruses” (SCVs) that lack essential viral genes, possess distinctive immune-modulatory features, and exhibit an excellent safety profile in the Syrian hamster model. Animals intranasally vaccinated with an Envelope-gene-deleted vaccine candidate were fully protected against an autologous challenge with the SARS-CoV-2 virus through systemic and mucosal humoral immune responses. Additionally, the deletion of immune-downregulating viral genes in the vaccine construct prevented challenge virus transmission to contact animals. Moreover, vaccinated animals displayed neither tissue inflammation nor lung damage. Consequently, SCVs hold promising potential to induce potent protection against COVID-19, surpassing the immunity conferred by natural infection, as demonstrated in human immune cells

    Efficacy of an unmodified bivalent mRNA vaccine against SARS-CoV-2 variants in female small animal models

    Get PDF
    Combining optimized spike (S) protein-encoding mRNA vaccines to target multiple SARS-CoV-2 variants could improve control of the COVID-19 pandemic. We compare monovalent and bivalent mRNA vaccines encoding B.1.351 (Beta) and/or B.1.617.2 (Delta) SARS-CoV-2 S-protein in a transgenic mouse and a Wistar rat model. The blended low-dose bivalent mRNA vaccine contains half the mRNA of each respective monovalent vaccine, but induces comparable neutralizing antibody titres, enrichment of lung-resident memory CD8+ T cells, antigen-specific CD4+ and CD8+ responses, and protects transgenic female mice from SARS-CoV-2 lethality. The bivalent mRNA vaccine significantly reduces viral replication in both Beta- and Delta-challenged mice. Sera from bivalent mRNA vaccine immunized female Wistar rats also contain neutralizing antibodies against the B.1.1.529 (Omicron BA.1 and BA.5) variants. These data suggest that low-dose and fit-for-purpose multivalent mRNA vaccines encoding distinct S-proteins are feasible approaches for extending the coverage of vaccines for emerging and co-circulating SARS-CoV-2 variants

    Contrasting Inflammatory Signatures in Peripheral Blood and Bronchoalveolar Cells Reveal Compartment-Specific Effects of HIV Infection

    Get PDF
    The mechanisms by which HIV increases susceptibility to tuberculosis and other respiratory infections are incompletely understood. We used transcriptomics of paired whole bronchoalveolar lavage cells (BLCs) and peripheral blood mononuclear cells to compare the effect of HIV at the lung mucosal surface and in peripheral blood. The majority of HIV-induced differentially expressed genes (DEGs) were specific to either the peripheral or lung mucosa compartments (1,307/1,404, 93%). Type I interferon signaling was the dominant signature of DEGs in HIV-positive blood but not in HIV-positive BLCs. DEGs in the HIV-positive BLCs were significantly enriched for infiltration with cytotoxic CD8+ T cells. Higher expression of type 1 interferon transcripts in peripheral CD8+ T cells and representative transcripts and proteins in BLCs-derived CD8+ T cells during HIV infection, including IFNG (IFN-gamma), GZMB (Granzyme B), and PDCD1 (PD-1), was confirmed by cell-subset specific transcriptional analysis and flow cytometry. Thus, we report that a whole transcriptomic approach revealed qualitatively distinct effects of HIV in blood and bronchoalveolar compartments. Further work exploring the impact of distinct type I interferon programs and functional features of CD8+ T cells infiltrating the lung mucosa during HIV infection may provide novel insights into HIV-induced susceptibility to respiratory pathogens

    Compartmentalized T cell profile in the lungs of patients with HIV-1-associated pulmonary Kaposi sarcoma.

    Get PDF
    Pulmonary Kaposi sarcoma (pKS) caused by Human herpesvirus 8 (HHV-8) is a devastating form of KS in patients with advanced acquired immunodeficiency syndrome (AIDS) and is associated with increased morbidity and mortality. Blood T cells play a central role in the response of HIV-1 and HHV-8. However, little information is available on T cells in the alveolar space of HIV-1-associated pKS patients.Therefore, we examined CD8+ and CD4+ T cells in the alveolar space in comparison with the blood of patients with pKS. We recruited 26 HIV-1 positive patients with KS, including 15 patients with pKS. Bronchoalveolar lavage (BAL) cells and blood mononuclear cells were analyzed for T cell memory phenotypes, surface markers associated with exhaustion, and intracellular cytokine staining (ICS) using flow cytometry. HIV-1 and HHV-8 viral loads were measured in plasma by quantitative PCR.BAL T cells showed reduced inflammatory capacities and significantly diminished polyfunctionality compared to blood T cells from patients with pKS. This was not accompanied by increased expression of exhaustion markers, such as TIM-3 and PD-1.More importantly, we found a negative correlation between the production of MIP1-β and TNF-α in T cells in BAL and blood, indicating compartmentalised immune responses to pKS and accentuated chronic HIV-1/HHV-8 pathogenesis via T cells in the lungs of people with pKS

    H5N1 clade 2.3.4.4b dynamics in experimentally infected calves and cows

    Get PDF
    In March 2024, highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4b H5N1 infections in dairy cows were first reported from Texas, USA1. Rapid dissemination to more than 190 farms in 13 states followed2. Here, we provide results of two independent clade 2.3.4.4b experimental infection studies evaluating (i) oronasal susceptibility and transmission in calves to a US H5N1 bovine isolate genotype B3.13 (H5N1 B3.13) and (ii) susceptibility of lactating cows following direct mammary gland inoculation of either H5N1 B3.13 or a current EU H5N1 wild bird isolate genotype euDG (H5N1 euDG). Inoculation of the calves resulted in moderate nasal replication and shedding with no severe clinical signs or transmission to sentinel calves. In dairy cows, infection resulted in no nasal shedding, but severe acute mammary gland infection with necrotizing mastitis and high fever was observed for both H5N1 isolates. Milk production was rapidly and drastically reduced and the physical condition of the cows was severely compromised. Virus titers in milk rapidly peaked at 108 TCID50/mL, but systemic infection did not ensue. Notably, adaptive mutation PB2 E627K emerged after intramammary replication of H5N1 euDG. Our data suggest that in addition to H5N1 B3.13, other HPAIV H5N1 strains have the potential to replicate in the udder of cows and that milk and milking procedures, rather than respiratory spread, are likely the primary routes of H5N1 transmission between cattle
    corecore