1,148 research outputs found
A Transferable Machine-Learning Model of the Electron Density
The electronic charge density plays a central role in determining the
behavior of matter at the atomic scale, but its computational evaluation
requires demanding electronic-structure calculations. We introduce an
atom-centered, symmetry-adapted framework to machine-learn the valence charge
density based on a small number of reference calculations. The model is highly
transferable, meaning it can be trained on electronic-structure data of small
molecules and used to predict the charge density of larger compounds with low,
linear-scaling cost. Applications are shown for various hydrocarbon molecules
of increasing complexity and flexibility, and demonstrate the accuracy of the
model when predicting the density on octane and octatetraene after training
exclusively on butane and butadiene. This transferable, data-driven model can
be used to interpret experiments, initialize electronic structure calculations,
and compute electrostatic interactions in molecules and condensed-phase
systems
Overcoming systematic DFT errors for hydrocarbon reaction energies
Despite the widespread use and numerous successful applications of density functional theory, descriptions of hydrocarbon reaction energies remain problematic. Illustrative examples include large underestimation of energies associated with alkane bond separation reactions and poor general description of intramolecular dispersion in hydrocarbons (e.g., B3LYP, MAD=14.1kcalmol−1). More recent, but not readily availably functionals, along with efficient posteriori corrections, not only show considerable improvement in the energy description of hydrocarbons but also help identify the sources of error in traditional DFT. Interactions in branched alkanes and compact hydrocarbons are adequately mimicked by systems compressed below their typical van der Waals distances. At these distances, standard DFT exchange functionals are overly repulsive for non-bonded density overlaps, and significant improvement is offered by the long-range corrected exchange functionals (e.g., LC-BLYP0.33, MAD=5.5kcalmol−1). For those systems, the neglect of long-range dispersion is found to be a critical shortcoming, as well as "overlap dispersion”, for which non-negligible amounts are captured by the correlation functional. Accounting for the missing dispersion interactions is of key importance. Accordingly, most noteworthy improvements over standard functionals are obtained by using non-local van der Waals density functionals (e.g., LC-S-VV09, MAD=3.6kcalmol−1, rPW86-VV09, MAD=5.8kcalmol−1), a dispersion corrected double hybrid (B2PLYP-D, MAD=2.5kcalmol−1), or by the addition of an atom pairwise density-dependent dispersion correction to a standard functional (e.g., PBE-dDXDM, MAD=0.8kcalmol−1). To a lesser extent, the reduction of the delocalization error (e.g., MCY3, MAD=6.3kcalmol−1) or careful parameter fitting (e.g., M06-2X, MAD=5.6kcalmol−1) also lowers the error
L'expérience vécue des parents ayant un bébé aux pleurs incessants liés à la colique: une revue de littératiure étoffée
Les pleurs incessants du bébé est un motif de consultation fréquent. De plus, la colique chez le nourrisson peut toucher entre 20 à 40 % des bébés selon les différentes études. Il s'agit donc d'un problème particulièrement fréquent dans notre société
Salt-induced thermochromism of a conjugated polyelectrolyte
We report here the photophysical properties of a water-soluble conjugated polythiophene with cationic side-chains. When dissolved in aqueous buffer solution (PBS, phosphate buffered saline), there is ordering of the polymer chains due to the presence of the salts, in contrast to pure water, where a random-coil conformation is adopted at room temperature. The ordering leads to a pronounced colour change of the solution (the absorption maximum shifts from 400 nm to 525 nm). Combining resonance Raman spectroscopy with density functional theory computations, we show a significant backbone planarization in the ordered phase. Moreover, the ratio of ordered phase to random-coil phase in PBS solution, as well as the extent of intermolecular interactions in the ordered phase, can be tuned by varying the temperature. Femtosecond transient absorption spectroscopy reveals that the excited- state behaviour of the polyelectrolyte is strongly affected by the degree of ordering. While triplet state formation is favoured in the random-coil chains, the ordered chains show a weak yield of polarons, related to interchain interactions. The investigated polyelectrolyte has been previously used as a biological DNA sensor, based on optical transduction when the conformation of the polyelectrolyte changes during assembly with the biomolecule. Therefore, our results, by correlating the photophysical properties of the polyelectrolyte to backbone and intermolecular conformation in a biologically relevant buffer, provide a significant step forward in understanding the mechanism of the biological sensing
Multi-Phonon -Vibrational Bands and the Triaxial Projected Shell Model
We present a fully quantum-mechanical, microscopic, unified treatment of
ground-state band and multi-phonon -vibrational bands using shell model
diagonalization with the triaxial projected shell model. The results agree very
well with data on the g- and -band spectra in Er, as well
as with recently measured 2-phonon -bandhead energies in
Er and Er. Multi-phonon -excitation energies are
predicted.Comment: 4 pages, 4 figures, submitted to Phys. Lett.
Identification of a New Chemical Class of Antimalarials
The increasing spread of drug-resistant malaria strains underscores the need for new antimalarial agents with novel modes of action (MOAs). Here, we describe a compound representative of a new class of antimalarials. This molecule, ACT-213615, potently inhibits in vitro erythrocytic growth of all tested Plasmodium falciparum strains, irrespective of their drug resistance properties, with half-maximal inhibitory concentration (IC50) values in the low single-digit nanomolar range. Like the clinically used artemisinins, the compound equally and very rapidly affects all 3 asexual erythrocytic parasite stages. In contrast, microarray studies suggest that the MOA of ACT-213615 is different from that of the artemisinins and other known antimalarials. ACT-213615 is orally bioavailable in mice, exhibits activity in the murine Plasmodium berghei model and efficacy comparable to that of the reference drug chloroquine in the recently established P. falciparum SCID mouse model. ACT-213615 represents a new class of potent antimalarials that merits further investigation for its clinical potentia
- …
