98 research outputs found

    Playing the game: defining indicators for intact forest landscapes in the Congo basin

    Full text link
    In 2014, the General Assembly of the FSC (Forest Stewardship Council) adopted Motion 65 that called for the protection of the vast majority of Intact Forest Landscapes (IFL) in FSC certified concessions around the Globe. To comply with Motion 65, a Regional Working Group for the Congo Basin on High Conservation Values (HCV-RWG) was established in 2016. To support its decision-making process, FSC invited a team of researchers as facilitators. The facilitation team associated Companion Modelling and MineSet. Companion Modelling is a participatory approach based on the development and use of role-playing games to support decision-making. MineSet, is a model of regional landscape change developed to explore the future of tropical forest landscapes in Central Africa over the next decades. MineSet places players in the roles of CEOs of logging and mining companies, interacting with markets, the government and NGOs, planning their activities and developing strategies to cope with the environmental, economic and social impacts of their decisions. It features all the major underlying drivers of land use change in Central Africa: demographics, economic and finance signals, governance and transparency, technological changes, and cultural differences. As the game unfolds, the players discover the complexity of the system, and devise new rules and strategies to balance development and conservation. The game and the discussion that follows enables stakeholders to share and confront their perceptions of the system, better grasp its complexities, explore alternative futures in a low-risk environment, and negotiate new forms of collective action. Taking on the role of a stakeholder has a profound impact on players' awareness and understanding of the system, and has the potential to reshape their perception on the problem at hand. This experience is a critical component of the approach and central to the learning process. Thanks to this combination, the RWG could unlock stalled negotiations, level the playing field between participants and move toward consensus. This example serves as proof of concept of the use of facilitation and games to address complex negotiations under conditions of high uncertainty and divergent interests. It shows a way to foster transformation in landscape management

    Fathers matter: male body mass affects life-history traits in a size-dimorphic seabird

    Get PDF
    One of the predicted consequences of climate change is a shift in body mass distributions within animal populations. Yet body mass, an important component of the physiological state of an organism, can affect key life-history traits and consequently population dynamics. Over the past decades, the wandering albatross—a pelagic seabird providing bi-parental care with marked sexual size dimorphism—has exhibited an increase in average body mass and breeding success in parallel with experiencing increasing wind speeds. To assess the impact of these changes, we examined how body mass affects five key life-history traits at the individual level: adult survival, breeding probability, breeding success, chick mass and juvenile survival. We found that male mass impacted all traits examined except breeding probability, whereas female mass affected none. Adult male survival increased with increasing mass. Increasing adult male mass increased breeding success and mass of sons but not of daughters. Juvenile male survival increased with their chick mass. These results suggest that a higher investment in sons by fathers can increase their inclusive fitness, which is not the case for daughters. Our study highlights sex-specific differences in the effect of body mass on the life history of a monogamous species with bi-parental care

    Hunting in times of change: Uncovering indigenous strategies in the Colombian amazon using a role-playing game

    Get PDF
    Despite growing industrialization, the shift to a cash economy and natural resource overexploitation, indigenous people of the Amazon region hunt and trade wildlife in order to meet their livelihood requirements. Individual strategies, shaped by the hunters' values and expectations, are changing in response to the region's economic development, but they still face the contrasting challenges of poverty and overhunting. For conservation initiatives to be implemented effectively, it is crucial to take into account people's strategies with their underlying drivers and their adaptive capabilities within a transforming socio-economic environment. To uncover hunting strategies in the Colombian Amazon and their evolution under the current transition, we co-designed a role-playing game together with the local stakeholders. The game revolves around the tension between ecological sustainability and food security—hunters' current main concern. It simulates the mosaic of activities that indigenous people perform in the wet and dry season, while also allowing for specific hunting strategies. Socio-economic conditions change while the game unfolds, opening up to emerging alternative potential scenarios suggested by the stakeholders themselves. Do hunters give up hunting when given the opportunity of an alternative income and protein source? Do institutional changes affect their livelihoods? We played the game between October and December 2016 with 39 players—all of them hunters—from 9 different communities within the Ticoya reserve. Our results show that providing alternatives would decrease overall hunting effort, but impacts are not spatially homogenous. Legalizing trade could lead to overhunting except when market rules and competition come into place. When it comes to coupled human-nature systems, the best way forward to produce socially just and resilient conservation strategies might be to trigger an adaptive process of experiential learning and scenario exploration. The use of games as “boundary objects” can guide stakeholders through the process, eliciting the plurality of their strategies, their drivers and how outside change affects them

    Main ecological drivers of woody plant species richness recovery in secondary forests in China

    Get PDF
    Identifying drivers behind biodiversity recovery is critical to promote efficient ecological restoration. Yet to date, for secondary forests in China there is a considerable uncertainty concerning the ecological drivers that affect plant diversity recovery. Following up on a previous published meta-analysis on the patterns of species recovery across the country, here we further incorporate data on the logging history, climate, forest landscape and forest attribute to conduct a nationwide analysis of the main drivers influencing the recovery of woody plant species richness in secondary forests. Results showed that regional species pool exerted a positive effect on the recovery ratio of species richness and this effect was stronger in selective cutting forests than that in clear cutting forests. We also found that temperature had a negative effect, and the shape complexity of forest patches as well as the percentage of forest cover in the landscape had positive effects on the recovery ratio of species richness. Our study provides basic information on recovery and resilience analyses of secondary forests in China

    Intégration d’un module d’apprentissage profond dans l’architecture logicielle d’un SIG Web

    Get PDF
    Depuis plusieurs années, l’intelligence artificielle connaît une très forte croissance de popularité aussi bien dans le milieu de la recherche scientifique qu’auprès de grandes compagnies des technologies de l’information. L'apprentissage profond, qui est un domaine de l'intelligence artificielle, s’invite aujourd’hui dans de nombreux domaines tels que les moteurs de recherche sur le Web, les assistants virtuels, la reconnaissance d’images ou encore les voitures autonomes. La majorité des algorithmes d’apprentissage profond sont basés sur des réseaux de neurones artificiels. Ceux-ci sont composés de neurones interconnectés organisés en couches successives. Depuis quelques dizaines d’années, les réseaux de neurones sont utilisés en géomatique. Particulièrement en télédétection le potentiel de reconnaissance d’images est exploité, notamment, à des fins de classification d’images ou de reconnaissance de cibles. Néanmoins, l'apprentissage profond n'est pas encore disponible dans les outils de géomatique les plus courants rendant ainsi l’accès à cette technologie plus difficile pour la communauté des géomaticiens. Dans cet essai un module d'apprentissage profond pour la classification d'images à très haute résolution a été intégré à un SIG sur le Web. La solution développée utilise une librairie de programmation dans le langage Python pour la création de réseaux de neurones artificiels. L’interface utilisateur permet de classifier des images géoréférencées sans connaissance en apprentissage profond ou en programmation de manière intuitive. L’application étant développée avec des outils de programmation libres et ouverts, il serait possible de la modifier pour l’adapter à une autre problématique spécifique

    Modélisation multi-agents des flux de spectateurs pour la gestion des accès en transports privés au Paléo Festival de Nyon

    Get PDF
    Le Paléo Festival de Nyon est une des plus grandes manifestations culturelle de la Suisse. Il rassemble plus de 36’000 spectateurs par jour pendant presque une semaine. Cette affluence est considérable pour la région et génère des flux importants. C'est pourquoi, Paléo a mis en place un vaste plan de mobilité. Néanmoins, malgré ce plan de mobilité, il arrive souvent que des embouteillages importants se forment aux sorties dautoroute proches du festival et que les transports en commun soient bondés aux heures d'affluence. Il est donc important pour Paléo de disposer d'outils permettant de prédire ces flux. Les objectifs de ce travail sont d'évaluer les flux de véhicules se rendant au Paléo à laide dune modélisation multi-agents et didentifier la distribution des flux aux abords du festival. Paléo dispose de données variées sur les spectateurs. Les principaux jeux de données utilisés dans cette recherche sont la billetterie internet de 2013, qui renseigne sur la provenance des spectateurs, et une enquête menée par le laboratoire LASUR de l'EPFL qui contient les répartitions modales des spectateurs. Le logiciel de microsimulation du trafic de lInstitut des Systèmes de Transport du Centre allemand pour l'aéronautique et l'aérospatial, SUMO, a été utilisé. De manière générale, les résultats de la simulation concordent avec la situation de trafic pendant Paléo. Des embouteillages importants à la sortie d'autoroute de Nyon ainsi quaux entrées de parkings ont été observés. En revanche, il a été constaté que la simulation n'est pas bien calibrée sur les données de flux réels. D'avantage d'observations pendant le Paléo seraient nécessaires pour affiner et calibrer la simulation
    corecore