835 research outputs found
The CoRoT Exoplanet program : status & results
The CoRoT satellite is the first instrument hunting for planets from space.
We will review the status of the CoRoT/Exoplanet program. We will then present
the CoRoT exoplanetary systems and how they widen the range of properties of
the close-in population and contribute to our understanding of the properties
of planets.Comment: 10 pages, Proceeding of Haute Provence Observatory Colloquium (23-27
August 2010
CoRoT's first seven planets: An overview
The up to 150 day uninterrupted high-precision photometry of about 100000
stars - provided so far by the exoplanet channel of the CoRoT space telescope -
gave a new perspective on the planet population of our galactic neighbourhood.
The seven planets with very accurate parameters widen the range of known planet
properties in almost any respect. Giant planets have been detected at low
metallicity, rapidly rotating and active, spotted stars. CoRoT-3 populated the
brown dwarf desert and closed the gap of measured physical properties between
standard giant planets and very low mass stars. CoRoT extended the known range
of planet masses down to 5 Earth masses and up to 21 Jupiter masses, the radii
to less than 2 Earth radii and up to the most inflated hot Jupiter found so
far, and the periods of planets discovered by transits to 9 days. Two CoRoT
planets have host stars with the lowest content of heavy elements known to show
a transit hinting towards a different planet-host-star-metallicity relation
then the one found by radial-velocity search programs. Finally the properties
of the CoRoT-7b prove that terrestrial planets with a density close to Earth
exist outside the Solar System. The detection of the secondary transit of
CoRoT-1 at the -level and the very clear detection of the 1.7 Earth
radii of CoRoT-7b at relative flux are promising evidence of
CoRoT being able to detect even smaller, Earth sized planets.Comment: 8 pages, 19 figures and 3 table
CoRoT: harvest of the exoplanet program
One of the objectives of the CoRoT mission is the search for transiting
extrasolar planets using high-precision photometry, and the accurate
characterization of their fundamental parameters. The CoRoT satellite
consecutively observes crowded stellar fields since February 2007, in
high-cadence precise photometry; periodic eclipses are detected and analysed in
the stellar light curves. Then complementary observations using ground-based
facilities allows establishing the nature of the transiting body and its mass.
CoRoT has acquired more than 163,000 light curves and detected about 500 planet
candidates. A fraction of them (5%) are confirmed planets whose masses are
independently measured. Main highlights of the CoRoT discoveries are: i) the
variety of internal structures in close-in giant planets, ii) the
characterisation of the first known transiting rocky planet, CoRoT-7 b, iii)
multiple constraints on the formation, evolution, role of tides in planetary
systems.Comment: Icarus, in press, special issue on Exoplanet
The spectroscopic observations of CoRoT asteroseismic targets with HARPS
CoRoT photometric measurements of asteroseismic targets need complementary
ground-based spectroscopic observations. We are using the planet-hunter HARPS
spectrograph attached to the 3.6m-ESO telescope in the framework of two
consecutive Large Programmes. We discuss its use to study line-profile
variations and we report on a specific result obtained for the Delta Sct star
HD 170699.Comment: Proceedings of the 20th Stellar Pulsation Conference Series: "Impact
of new instrumentation & new insights in stellar pulsations", 5-9 September
2011, Granada, Spai
Magnetic Nanoparticles for Power Absorption: optimizing size, shape and magnetic properties
We present a study on the magnetic properties of naked and silica-coated
Fe3O4 nanoparticles with sizes between 5 and 110 nm. Their efficiency as
heating agents was assessed through specific power absorption (SPA)
measurements as a function of particle size and shape. The results show a
strong dependence of the SPA with the particle size, with a maximum around 30
nm, as expected for a Neel relaxation mechanism in single-domain particles. The
SiO2 shell thickness was found to play an important role in the SPA mechanism
by hindering the heat outflow, thus decreasing the heating efficiency. It is
concluded that a compromise between good heating efficiency and surface
functionality for biomedical purposes can be attained by making the SiO2
functional coating as thin as possible.Comment: 15 pages, 7 figures, 2 table
Close-up of primary and secondary asteroseismic CoRoT targets and the ground-based follow-up observations
To optimise the science results of the asteroseismic part of the CoRoT
satellite mission a complementary simultaneous ground-based observational
campaign is organised for selected CoRoT targets. The observations include both
high-resolution spectroscopic and multi-colour photometric data. We present the
preliminary results of the analysis of the ground-based observations of three
targets. A line-profile analysis of 216 high-resolution FEROS spectra of the
delta Sct star HD 50844 reveals more than ten pulsation frequencies in the
frequency range 5-18 c/d, including possibly one radial fundamental mode (6.92
c/d). Based on more than 600 multi-colour photometric datapoints of the beta
Cep star HD180642, spanning about three years and obtained with different
telescopes and different instruments, we confirm the presence of a dominant
radial mode nu1=5.48695 c/d, and detect also its first two harmonics. We find
evidence for a second mode nu2=0.3017 c/d, possibly a g-mode, and indications
for two more frequencies in the 7-8 c/d domain. From Stromgren photometry we
find evidence for the hybrid delta Sct/gamma Dor character of the F0 star HD
44195, as frequencies near 3 c/d and 21 c/d are detected simultaneously in the
different filters.Comment: 7 pages, 6 figures, HELAS II International Conference
"Helioseismology, Asteroseismology and MHD Connections", 2008, J.Phys.: Conf.
Ser. 118, 01207
One-pot preparation of surface modified boehmite nanoparticles with rare-earth cyclen complexes
We report on the one-pot synthetic procedure of cyclen derivatives bearing three acetate groups attached on boehmite nanoparticles, the complexing capabilities of these inorganic–organic hybrid materials with rare earth cations, and the behaviour as contrast agents or fluorescence probes.Delgado Pinar, Estefania, [email protected] ; Frias Martinez, Juan Carlos, [email protected] ; Albelda Gimeno, Maria Teresa, [email protected] ; Alarcon Navarro, Javier, [email protected] ; Garcia-España Monsonis, Enrique, [email protected]
Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron
Abstract: Magnetically labelled cells are used for in vivo cell tracking by MRI, used for the clinical translation of cell-base therapies. Studies involving magnetic labelled cells may include separation of labelled cells, targeted delivery and controlled release of drugs, contrast enhanced MRI and magnetic hyperthermia for the in situ ablation of tumours. Dextran-coated super-paramagnetic iron oxide (SPIO) ferumoxides are used clinically as an MR contrast agents primarily for hepatic imaging. The material is also widely used for in vitro cell labelling, as are other SPIO-based particles. Our results on the uptake by human cancer cell lines of ferumoxides indicate that electroporation in the presence of protamine sulphate (PS) results in rapid high uptake of SPIO nanoparticles (SPIONs) by parenchymal tumour cells without significant impairment of cell viability. Quantitative determination of cellular iron uptake performed by colorimetric assay is in agreement with data from the literature. These results on intracellular iron content together with the intracellular distribution of SPIONs by magnetic force microscopy (MFM) following in vitro uptake by parenchymal tumour cells confirm the potential of this technique for clinical tumour cell detection and destruction
- …
