9,282 research outputs found
The Tanzanian National Plan of Action for Most Vulnerable Children:A Human Capacity Needs Assessment.
Experience-Based Planning with Sparse Roadmap Spanners
We present an experienced-based planning framework called Thunder that learns
to reduce computation time required to solve high-dimensional planning problems
in varying environments. The approach is especially suited for large
configuration spaces that include many invariant constraints, such as those
found with whole body humanoid motion planning. Experiences are generated using
probabilistic sampling and stored in a sparse roadmap spanner (SPARS), which
provides asymptotically near-optimal coverage of the configuration space,
making storing, retrieving, and repairing past experiences very efficient with
respect to memory and time. The Thunder framework improves upon past
experience-based planners by storing experiences in a graph rather than in
individual paths, eliminating redundant information, providing more
opportunities for path reuse, and providing a theoretical limit to the size of
the experience graph. These properties also lead to improved handling of
dynamically changing environments, reasoning about optimal paths, and reducing
query resolution time. The approach is demonstrated on a 30 degrees of freedom
humanoid robot and compared with the Lightning framework, an experience-based
planner that uses individual paths to store past experiences. In environments
with variable obstacles and stability constraints, experiments show that
Thunder is on average an order of magnitude faster than Lightning and planning
from scratch. Thunder also uses 98.8% less memory to store its experiences
after 10,000 trials when compared to Lightning. Our framework is implemented
and freely available in the Open Motion Planning Library.Comment: Submitted to ICRA 201
- …
