831 research outputs found

    Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: an experimental approach

    Get PDF
    International audienceMagma transport through dikes is a major component of the development of monogenetic volcanic fields. These volcanic fields are characterized by numerous volcanic centers, each typically resulting from a single eruption. Therefore, magma must be transported from source to surface at different places, which raises the question of the relative importance of (1) the self-propagation of magma through pristine rock and (2) the control exerted by pre-existing fractures. To address this issue, we have carried out a series of analogue experiments to constrain the interaction of a propagating dike through a medium with pre-existing fractures. The experiments involved the injection of air into an elastic gelatin solid, which was previously cut into its upper part to simulate pre-existing fractures. The volume of the dikes, their distance from the fractures, and the ambient stress field were systematically varied to assess their influence on potential dike-fracture interactions. The results show that distance and angle between dikes and fractures influence these interactions and the dike trajectory. Dike geometry and dynamics are also affected by both the presence of the fractures and the dike volume; dikes propagating in between fractures tend to decelerate. In nature, interactions are expected for dikes and fractures separated by less than about 200 m, and dikes with a volume less than about 10 2 km3 would experience a velocity decrease. These results highlight the influence of pre-existing fractures on the mechanics and dynamics of dikes. These heterogeneities must be considered when studying the transport of magmas within the crust

    In vitro emergence of rifampicin resistance in Propionibacterium acnes and molecular characterization of mutations in the rpoB gene

    Get PDF
    Objectives Activity of rifampicin against Propionibacterium acnes biofilms was recently demonstrated, but rifampicin resistance has not yet been described in this organism. We investigated the in vitro emergence of rifampicin resistance in P. acnes and characterized its molecular background. Methods P. acnes ATCC 11827 was used (MIC 0.007 mg/L). The mutation rate was determined by inoculation of 109 cfu of P. acnes on rifampicin-containing agar plates incubated anaerobically for 7 days. Progressive emergence of resistance was studied by serial exposure to increasing concentrations of rifampicin in 72 h cycles using a low (106 cfu/mL) and high (108 cfu/mL) inoculum. The stability of resistance was determined after three subcultures of rifampicin-resistant isolates on rifampicin-free agar. For resistant mutants, the whole rpoB gene was amplified, sequenced and compared with a P. acnes reference sequence (NC006085). Results P. acnes growth was observed on rifampicin-containing plates with mutation rates of 2 ± 1 cfu × 10−9 (4096× MIC) and 12 ± 5 cfu × 10−9 (4× MIC). High-level rifampicin resistance emerged progressively after 4 (high inoculum) and 13 (low inoculum) cycles. In rifampicin-resistant isolates, the MIC remained >32 mg/L after three subcultures. Mutations were detected in clusters I (amino acids 418-444) and II (amino acids 471-486) of the rpoB gene after sequence alignment with a Staphylococcus aureus reference sequence (CAA45512). The five following substitutions were found: His-437 → Tyr, Ser-442 → Leu, Leu-444 → Ser, Ile-483 → Valand Ser-485 → Leu. Conclusion The rifampicin MIC increased from highly susceptible to highly resistant values. The resistance remained stable and was associated with mutations in the rpoB gene. To our knowledge, this is the first report of the emergence of rifampicin resistance in P. acne

    Interaction of Cutibacterium (formerly Propionibacterium) acnes with bone cells: a step toward understanding bone and joint infection development

    Get PDF
    Cutibacterium acnes (formerly Propionibacterium acnes) is recognized as a pathogen in foreign-body infections (arthroplasty or spinal instrumentation). To date, the direct impact of C. acnes on bone cells has never been explored. The clade of 11 C. acnes clinical isolates was determined by MLST. Human osteoblasts and osteoclasts were infected by live C. acnes. The whole genome sequence of six isolates of this collection was analyzed. CC36 C. acnes strains were significantly less internalized by osteoblasts and osteoclasts than CC18 and CC28 C. acnes strains (p ≤ 0.05). The CC18 C. acnes ATCC6919 isolate could survive intracellularly for at least 96 hours. C. acnes significantly decreased the resorption ability of osteoclasts with a major impact by the CC36 strain (p ≤ 0.05). Genome analysis revealed 27 genes possibly linked to these phenotypic behaviors. We showed a direct impact of C. acnes on bone cells, providing new explanations about the development of C. acnes foreign-body infections

    Impact of volcanism on the sedimentary record of the Neuquén rift basin, Argentina: towards a cause and effect model

    Get PDF
    The analysis of volcano-sedimentary infill in sedimentary basins constitutes a challenge for basin analysis and hydrocarbon exploration worldwide. In order to understand the contribution of volcanism to the sedimentary record in rift basins, we study the Jurassic effusive-explosive volcanic infill of an inverted extensional depocentre at the Neuquén Basin, Argentina. A cause and effect model that evaluates the relationship between volcanism and sedimentation was devised to develop a conceptual model for the tectono-stratigraphic evolution of this volcanic rift basin. We show how the variations in the volcanism, coupled with the activity of extensional faults, determined the types of volcanic edifices (i.e., composite volcanoes, graben-calderas, and lava fields). Volcanic edifices controlled the stacking patterns of the volcanic units as well as sedimentary systems. The landform of the volcanic edifices, as well as the styles and scales of the eruptions governed the sedimentary input to the basin, setting the main variables of the sedimentary systems, such as provenance, grain size, transport and deposition and geometry. As a result, the contrasting volcaniclastic input, from higher volcaniclastic input to lower volcaniclastic input, associated with different subsidence patterns, determined the high-resolution syn-rift infill patterns of the extensional depocentre. The cause and effect model presented in this study isolates the variables of the volcanic environments that control the sedimentary scenarios. We suggest that, by adjusting the first order input parameters of the model, these cause and effect scenarios could be adapted to similar rift basins, in order to establish predictive facies models with stratigraphic controls, and the impact of volcanism on their stratigraphic records.Fil: D'Elia, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Martí, Joan. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; EspañaFil: Muravchik, Martin. University Of Bergen; Noruega. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bilmes, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología.; ArgentinaFil: Franzese, Juan Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; Argentin

    Multicentre prospective evaluation of histological and molecular criterion for diagnosis of prosthetic-joint infection

    Get PDF
    Objectives: This multicenter prospective study was performed to assess the contribution of broad range PCR diagnosis in prosthetic-joint infection (PJI). Methods: Adult patients treated for PJI at 7 centers were included between December 2010 and March 2012. Six per-operative samples were obtained for each patient, 5 for conventional cultures and 16S rRNA gene real-time PCR followed by sequencing, and 1 for histopathological classification according to Morawietz. Cultures and PCR were performed in a highly standardized manner, with 3 quality controls of PCR analyses. An infection was considered as proved (3 criteria: per-operative, bacteriological and histological), probable (clinical or bacteriological criterium), or excluded (no criterium). Molecular criterium for predicting PJI was determined using the bacteriological one as reference (>=1 positive sample for virulent organism, and >=3 positive samples for coagulase-negative staphylococci (CoNS) and P. acnes). Results: 299 patients were included, 264 with suspicion of sepsis (S) and 35 as controls (C). The 264 S presented with acute (19%), or chronic suspicion of PJI (81%). Infection was proved or probable in 212/264 S (80%), with the bacteriological criterium in 189/212 S (89%). Out of these, 156 (83%) had monomicrobial and 33 (17%) polymicrobial infections. The isolated pathogens were S. aureus (40%), CoNS (25%), streptococci (14%), Gram-Negative rods (10%), and anaerobes 8%. Histology results were not available for 55 patients, leaving 244 patients available for analysis. Histological findings of infection (Morawietz types II or III) were present in 128/169 (76%) proved or probable infections, in 3 patients without any other criterium, and were absent in excluded infections (n=42) and controls (n=29). PCR results were not analysable for 32 patients (S=28, C=4), leaving 267 patients (S=236, C=31) available for analysis. Molecular criterium of infection was present in 63/68 (93%) proved infections, 83/124 (67%) probable infections, 3/42 excluded infections, 0/2 histological criterium alone and 2/31 controls. Molecular criterium of infection was absent in 34/189 (18%) culture-positive S, and present in 8/23 culture-negative S (8 patients treated with antibiotics). Conclusions: According to this multicenter prospective study, 16S rRNA gene real-time PCR is less susceptible than culture for diagnosis of PJI. Molecular analysis could be recommended in culture-negative patients who were receiving antibiotics

    Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province

    Get PDF
    The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi­nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto­cene. There are as many as 161 volcanoes (there is some uncertainty due to erosion and burial of older centers); the volumes of individual eruptions were typically ~0.1 km 3 and smaller. The volcanic field is underlain by a seismically slow asthenospheric domain that likely reflects compositional variability rela­tive to surrounding material, such as relatively higher abundances of hydrous phases. Although we do not speculate about why the domain is in its cur­rent location, its presence likely explains the unusual location of the LCVF within the interior of the Basin and Range Province. Volcanism in the LCVF occurred in 4 magmatic episodes, based upon geochemistry and ages of 35 eruptive units: episode 1 between ca. 6 and 5 Ma, episode 2 from ca. 4.7 to 3 Ma, episode 3 between ca. 1.1 and 0.4 Ma, and episode 4, ca. 300 to 35 ka. Each successive episode shifted northward but partly overlapped the area of its predecessor. Compositions of the eruptive products include basalts, teph­rites, basanites, and trachybasalts, with very minor volumes of trachyandesite and trachyte (episode 2 only). Geochemical and petrologic data indicate that magmas originated in asthenospheric mantle throughout the lifetime of the volcanic field, but that the products of the episodes were derived from unique source types and therefore reflect upper mantle compositional variability on spatial scales of tens of kilometers. All analyzed products of the volcanic field have characteristics consistent with small degrees of partial melting of ocean island basalt sources, with additional variability related to subduction­-related enrichment processes in the mantle, including contributions from recycled ocean crust (HIMU source; high­-µ, where µ = 238 U/ 204 Pb) and from hydrous flu­ids derived from subducted oceanic crust (enriched mantle, EM source). Geo­chemical evidence indicates subtle source heterogeneity at scales of hundreds of meters to kilometers within each episode­ scale area of activity, and tempo­rary ponding of magmas near the crust­-mantle boundary. Episode 1 magmas may have assimilated Paleozoic carbonate rocks, but the other episodes had little if any chemical interaction with the crust. Thermodynamic modeling and the presence of amphibole support dissolved water contents to ~5–7 wt% in some of the erupted magmas. The LCVF exhibits clustering in the form of overlapping and colocated monogenetic volcanoes that were separated by variable amounts of time to as much as several hundred thousand years, but without sustained crustal reservoirs between the episodes. The persistence of clusters through different episodes and their association with fault zones are consistent with shear­ assisted mobilization of magmas ponded near the crust­-mantle boundary, as crustal faults and underlying ductile deformation persist for hundreds of thousands of years or more (longer than individual episodes). Volcanoes were fed at depth by dikes that occur in en echelon sets and that preserve evidence of multiple pulses of magma. The dikes locally flared in the upper ~10 m of the crust to form shallow conduits that fed erup­tions. The most common volcanic landforms are scoria cones, agglomerate ramparts, and ‘a‘ ā lava fields. Eruptive styles were dominantly Strombolian to Hawaiian; the latter produced tephra fallout blankets, along with effusive activity, although many lavas were likely clastogenic and associated with lava fountains. Eroded scoria cones reveal complex plumbing structures, includ­ing radial dikes that fed magma to bocas and lava flows on the cone flanks. Phreatomagmatic maar volcanoes compose a small percentage of the land­ form types. We are unable to identify any clear hydrologic or climatic drivers for the phreatomagmatic activity; this suggests that intrinsic factors such as magma flux played an important role. Eruptive styles and volumes appear to have been similar throughout the 6 m.y. history of the volcanic field and across all 4 magmatic episodes. The total volume and time­ volume behavior of the LCVF cannot be precisely determined by surface observations due to erosion and burial by basin­fill sediments and subsequent eruptive products. However, previous estimates of a total volume of 100 km3 are likely too high by a factor of ~5, suggesting an average long­term eruptive flux of ~3–5 km 3 /m.y

    A modelling investigation into the impacts of the convective parameterization on the tropical circulation

    Get PDF
    Many studies have shown that the tropical circulations (Walker and Hadley circulations) will weaken in a warmer world. This is sometimes attributed to changes in the tropical mean water cycling rate (driven by convective mass flux), which does not increase as fast as boundary layer water vapour in the tropics. However, this theory is only valid for the large scale upward convective mass flux in the tropics, not necessarily to the local circulations, which are not as energetically constrained. Here, we show that there is also a potential regime in which this argument does not hold by simply changing the convective scheme in a climate model. This regime is one in which the tropical mean convective mass flux can actually increase with warming, provided the precipitation efficiency decreases significantly. Our work supports the theory that the uniform tropical mean static stability increase is the physical driver of the weakening of the tropical circulations with climate change, which is mainly driven by the tropical mean SST increase, regardless of the change in strength of convective mass flux. The local changes in tropospheric diabatic heating from heating are shown to influence the magnitude of the weakening of the Walker circulation. We find that the precipitation efficiency decreases in an increased sea surface temperature AMIP-type experiment using the CAM4 AGCM with an alternate convective scheme using a unique mass flux closure, leading to a plausible scenario where tropical mean convective mass flux may increase, while the large-scale tropical circulations still weaken. While large-scale upward motion and convective mass flux are closely correlated spatially, the nature of this relationship can change in a warmer world if the precipitation efficiency changes. A decrease in precipitation efficiency can allow for increased upward convective mass flux, but the same tropospheric heating rate response, as the increased rate of condensational heating is offset by increased evaporational cooling. A decrease in precipitation efficiency leads to a lower heating rate per unit of upward mass flux due to a compensating increase in evaporation. The large tropical mean evaporation response seen with this scheme allows for stronger tropical mean convective updrafts, especially of the shallow variety, to balance where the evaporational cooling response is maximized

    Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: a prospective multicenter cross-sectional study

    Get PDF
    There is no standard method for the diagnosis of prosthetic joint infection (PJI). The contribution of 16S rRNA gene PCR sequencing on a routine basis remains to be defined. We performed a prospective multicenter study to assess the contributions of 16S rRNA gene assays in PJI diagnosis. Over a 2-year period, all patients suspected to have PJIs and a few uninfected patients undergoing primary arthroplasty (control group) were included. Five perioperative samples per patient were collected for culture and 16S rRNA gene PCR sequencing and one for histological examination. Three multicenter quality control assays were performed with both DNA extracts and crushed samples. The diagnosis of PJI was based on clinical, bacteriological, and histological criteria, according to Infectious Diseases Society of America guidelines. A molecular diagnosis was modeled on the bacteriological criterion (≥ 1 positive sample for strict pathogens and ≥ 2 for commensal skin flora). Molecular data were analyzed according to the diagnosis of PJI. Between December 2010 and March 2012, 264 suspected cases of PJI and 35 control cases were included. PJI was confirmed in 215/264 suspected cases, 192 (89%) with a bacteriological criterion. The PJIs were monomicrobial (163 cases [85%]; staphylococci, n = 108; streptococci, n = 22; Gram-negative bacilli, n = 16; anaerobes, n = 13; others, n = 4) or polymicrobial (29 cases [15%]). The molecular diagnosis was positive in 151/215 confirmed cases of PJI (143 cases with bacteriological PJI documentation and 8 treated cases without bacteriological documentation) and in 2/49 cases without confirmed PJI (sensitivity, 73.3%; specificity, 95.5%). The 16S rRNA gene PCR assay showed a lack of sensitivity in the diagnosis of PJI on a multicenter routine basis

    Assessing future vent opening locations at the Somma-Vesuvio volcanic complex. 2, probability maps of the caldera for a future Plinian/sub-Plinian event with uncertainty quantification

    Get PDF
    In this study, we combine reconstructions of volcanological data sets and inputs from a structured expert judgment to produce a first long-term probability map for vent opening location for the next Plinian or sub-Plinian eruption of Somma-Vesuvio. In the past, the volcano has exhibited significant spatial variability in vent location; this can exert a significant control on where hazards materialize (particularly of pyroclastic density currents). The new vent opening probability mapping has been performed through (i) development of spatial probability density maps with Gaussian kernel functions for different data sets and (ii) weighted linear combination of these spatial density maps. The epistemic uncertainties affecting these data sets were quantified explicitly with expert judgments and implemented following a doubly stochastic approach. Various elicitation pooling metrics and subgroupings of experts and target questions were tested to evaluate the robustness of outcomes. Our findings indicate that (a) Somma-Vesuvio vent opening probabilities are distributed inside the whole caldera, with a peak corresponding to the area of the present crater, but with more than 50% probability that the next vent could open elsewhere within the caldera; (b) there is a mean probability of about 30% that the next vent will open west of the present edifice; (c) there is a mean probability of about 9.5% that the next medium-large eruption will enlarge the present Somma-Vesuvio caldera, and (d) there is a nonnegligible probability (mean value of 6–10%) that the next Plinian or sub-Plinian eruption will have its initial vent opening outside the present Somma-Vesuvio caldera
    corecore