75 research outputs found
Transcriptome analysis of northern elephant seal (Mirounga angustirostris) muscle tissue provides a novel molecular resource and physiological insights
BackgroundThe northern elephant seal, Mirounga angustirostris, is a valuable animal model of fasting adaptation and hypoxic stress tolerance. However, no reference sequence is currently available for this and many other marine mammal study systems, hindering molecular understanding of marine adaptations and unique physiology.ResultsWe sequenced a transcriptome of M. angustirostris derived from muscle sampled during an acute stress challenge experiment to identify species-specific markers of stress axis activation and recovery. De novo assembly generated 164,966 contigs and a total of 522,699 transcripts, of which 68.70% were annotated using mouse, human, and domestic dog reference protein sequences. To reduce transcript redundancy, we removed highly similar isoforms in large gene families and produced a filtered assembly containing 336,657 transcripts. We found that a large number of annotated genes are associated with metabolic signaling, immune and stress responses, and muscle function. Preliminary differential expression analysis suggests a limited transcriptional response to acute stress involving alterations in metabolic and immune pathways and muscle tissue maintenance, potentially driven by early response transcription factors such as Cebpd.ConclusionsWe present the first reference sequence for Mirounga angustirostris produced by RNA sequencing of muscle tissue and cloud-based de novo transcriptome assembly. We annotated 395,102 transcripts, some of which may be novel isoforms, and have identified thousands of genes involved in key physiological processes. This resource provides elephant seal-specific gene sequences, complementing existing metabolite and protein expression studies and enabling future work on molecular pathways regulating adaptations such as fasting, hypoxia, and environmental stress responses in marine mammals
The Effects of Handling and Anesthetic Agents on the Stress Response and Carbohydrate Metabolism in Northern Elephant Seals
Free-ranging animals often cope with fluctuating environmental conditions such as weather, food availability, predation risk, the requirements of breeding, and the influence of anthropogenic factors. Consequently, researchers are increasingly measuring stress markers, especially glucocorticoids, to understand stress, disturbance, and population health. Studying free-ranging animals, however, comes with numerous difficulties posed by environmental conditions and the particular characteristics of study species. Performing measurements under either physical restraint or chemical sedation may affect the physiological variable under investigation and lead to values that may not reflect the standard functional state of the animal. This study measured the stress response resulting from different handling conditions in northern elephant seals and any ensuing influences on carbohydrate metabolism. Endogenous glucose production (EGP) was measured using [6-3H]glucose and plasma cortisol concentration was measured from blood samples drawn during three-hour measurement intervals. These measurements were conducted in weanlings and yearlings with and without the use of chemical sedatives—under chemical sedation, physical restraint, or unrestrained. We compared these findings with measurements in adult seals sedated in the field. The method of handling had a significant influence on the stress response and carbohydrate metabolism. Physically restrained weanlings and yearlings transported to the lab had increased concentrations of circulating cortisol (F11, 46 = 25.2, p,0.01) and epinephrine (F3, 12 = 5.8, p = 0.01). Physical restraint led to increased EGP (t = 3.1, p = 0.04) and elevated plasma glucose levels (t = 8.2, p,0.01). Animals chemically sedated in the field typically did not exhibit a cortisol stress response. The combination of anesthetic agents (Telazol, ketamine, and diazepam) used in this study appeared to alleviate a cortisol stress response due to handling in the field without altering carbohydrate metabolism. Measures of hormone concentrations and metabolism made under these conditions are more likely to reflect basal values.Published by and copyright by Public Library of Science (PLoS)Champagne CD, Houser DS, Costa DP, Crocker DE (2012) The Effects of Handling and Anesthetic Agents on the Stress Response and Carbohydrate Metabolism in Northern Elephant Seals. PLoS ONE 7(5)1932-620
Measurement of free glucocorticoids: quantifying corticosteroid binding capacity and its variation within and among mammal and bird species
Plasma glucocorticoid (CORT) levels are one measure of stress in wildlife and give us insight into natural processes relevant to
conservation issues.Many studies use total CORT concentrations to drawconclusions about animals’stress state and response
to their environment. However, the blood of tetrapods contains corticosteroid-binding globulin (CBG), which strongly binds
most circulating CORT. Only free CORT (CORT not bound by CBG) leaves the circulation and exerts biological effects on
CORT-sensitive tissues. Measuring free CORT concentrations provides insight to an animal’s stress response that cannot be
revealed by simply measuring total CORT. To calculate free CORT concentrations in plasma or serum samples, one needs three
measurements: the binding affinity of CBG for CORT (which varies by species), the total CORT concentration in the sample
and the maximum corticosteroid binding capacity (MCBC) of CBG in the sample. Here, we detail the measurement of CBG
binding capacity. We compare and contrast the three main methods to measure MCBC: charcoal, cell harvester and dialysis.
Each is defined by the means by which free and bound CORT are separated. We weigh the relative merits and challenges of
each. We conclude that sample volume, species and taxon binding specificity, and availability of equipment are the primary
considerations in selecting the appropriate separation method. For most mammals, the charcoal method is recommended.
For birds, the harvester method has critical advantages over the charcoal method. The dialysis method is widely regarded as
the gold standard and has lower equipment costs but is more time-intensive and costly in terms of radioactive isotope needed
and is less suited to processing large numbers of samples. The binding capacity of CBG varies tremendously within and among
the bird and marine mammal species studied, and we discuss the implication of this variation for understanding the role of
stress in wildlife
Mismatches in scale between highly mobile marine megafauna and marine protected areas
Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only \u3c 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed \u3c 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques
Foraging Behavior and Success of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich Species, the Northern Elephant Seal
The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean
Mismatches in scale between highly mobile marine megafauna and marine protected areas
Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only < 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed < 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques.Fil: Conners, Melinda G.. University of Washington; Estados Unidos. State University of New York. Stony Brook University; Estados UnidosFil: Sisson, Nicholas B.. Old Dominion University; Estados UnidosFil: Agamboue, Pierre D.. Wildlife Conservation Society; GabónFil: Atkinson, Philip W.. British Trust For Ornithology; Reino UnidoFil: Baylis, Alastair M. M.. Macquarie University; Australia. South Atlantic Environmental Research Institute; Reino UnidoFil: Benson, Scott R.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados Unidos. Moss Landing Marine Laboratories; Estados UnidosFil: Block, Barbara A.. University of Stanford; Estados UnidosFil: Bograd, Steven J.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Bordino, Pablo. Mote Marine Laboratory; Estados UnidosFil: Bowen, W.D.. Bedford Institute Of Oceanography, Fisheries And Oceans Canada; Canadá. Dalhousie University Halifax; CanadáFil: Brickle, Paul. South Atlantic Environmental Research Institute; Reino Unido. University of Aberdeen; Reino Unido. University Of Aberdeeen; Reino UnidoFil: Bruno, Ignacio Matias. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: González Carman, Victoria. Instituto Nacional de Investigaciones y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Champagne, Cory D.. University of Washington; Estados UnidosFil: Crocker, Daniel E.. Sonoma State University; Estados UnidosFil: Costa, Daniel P.. University of California; Estados UnidosFil: Dawson, Tiffany M.. University Of Central Florida; Estados Unidos. Old Dominion University; Estados UnidosFil: Deguchi, Tomohiro. Yamashina Institute For Ornithology; JapónFil: Dewar, Heidi. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Doherty, Philip D.. University of Exeter; Reino UnidoFil: Eguchi, Tomo. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Formia, Angela. Wildlife Conservation Society; Gabón. African Aquatic Conservation Fund; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: Graham, Rachel T.. Maralliance; PanamáFil: Gredzens, Christian. Padre Island National Seashore; Estados UnidosFil: Hart, Kristen M.. United States Geological Survey; Estados UnidosFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Henderson, Suzanne. Scottish Natural Heritage; Reino UnidoFil: Henry, Robert William. Groundswell Coastal Ecology; Estados UnidosFil: Hückstädt, Luis A.. University of Exeter; Reino Unido. University of California; Estados Unido
The Effects of Handling and Anesthetic Agents on the Stress Response and Carbohydrate Metabolism in Northern Elephant Seals
Free-ranging animals often cope with fluctuating environmental conditions such as weather, food availability, predation risk, the requirements of breeding, and the influence of anthropogenic factors. Consequently, researchers are increasingly measuring stress markers, especially glucocorticoids, to understand stress, disturbance, and population health. Studying free-ranging animals, however, comes with numerous difficulties posed by environmental conditions and the particular characteristics of study species. Performing measurements under either physical restraint or chemical sedation may affect the physiological variable under investigation and lead to values that may not reflect the standard functional state of the animal. This study measured the stress response resulting from different handling conditions in northern elephant seals and any ensuing influences on carbohydrate metabolism. Endogenous glucose production (EGP) was measured using [6-3H]glucose and plasma cortisol concentration was measured from blood samples drawn during three-hour measurement intervals. These measurements were conducted in weanlings and yearlings with and without the use of chemical sedatives—under chemical sedation, physical restraint, or unrestrained. We compared these findings with measurements in adult seals sedated in the field. The method of handling had a significant influence on the stress response and carbohydrate metabolism. Physically restrained weanlings and yearlings transported to the lab had increased concentrations of circulating cortisol (F11, 46 = 25.2, p<0.01) and epinephrine (F3, 12 = 5.8, p = 0.01). Physical restraint led to increased EGP (t = 3.1, p = 0.04) and elevated plasma glucose levels (t = 8.2, p<0.01). Animals chemically sedated in the field typically did not exhibit a cortisol stress response. The combination of anesthetic agents (Telazol, ketamine, and diazepam) used in this study appeared to alleviate a cortisol stress response due to handling in the field without altering carbohydrate metabolism. Measures of hormone concentrations and metabolism made under these conditions are more likely to reflect basal values
Mismatches in Scale Between Highly Mobile Marine Megafauna and Marine Protected Areas
Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only \u3c 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed \u3c 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques
Mismatches in Scale Between Highly Mobile Marine Megafauna and Marine Protected Areas
Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only \u3c 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed \u3c 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques
Foraging Behavior and Success of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich Species, the Northern Elephant Seal
The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean.Published by and copyright by Public Library of Science (PLoS)Robinson PW, Costa DP, Crocker DE, Gallo-Reynoso JP, Champagne CD, et al. (2012) Foraging Behavior and Success of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich Species, the Northern Elephant Seal. PLoS ONE 7(5)1932-620
- …
