191 research outputs found
High number of circulating CD34+ cells in patients with myelophthisis.
Hematopoietic Stem Cells
High number of circulating CD34+ cells in
patients with myelophthisis
Six patients with bone marrow micrometastases
from solid cancers presented with increased numbers
of circulating CD34+ cells; the CD34+ cell
counts were very high in some cases. By contrast,
no patient with metastatic cancer without bone
marrow involvement showed raised numbers of
circulating hemopoietic progenitors.
haematologica 2005; 90:976-977
(http:/
Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography
In situ and laboratory experiments have shown that electrical resistivity tomography (ERT) is an effective tool to image transient phenomena in soils. However, its application in quantifying soil hydraulic parameters has been limited. In this study, experiments of water inflow in unsaturated soil samples were conducted in an oedometer equipped to perform three-dimensional electrical measurements. Reconstructions of the electrical conductivity at different times confirmed the usefulness of ERT for monitoring the evolution of water content. The tomographic reconstructions were subsequently used in conjunction with a finite-element simulation to infer the water retention curve and the unsaturated hydraulic conductivity. The parameters estimated with ERT agree satisfactorily with those determined using established techniques, hence the proposed approach shows good potential for relatively fast characterisations. Similar experiments could be carried out on site to study the hydraulic behaviour of the entire soil deposi
Issues and Observations on Applications of the Constrained-Path Monte Carlo Method to Many-Fermion Systems
We report several important observations that underscore the distinctions
between the constrained-path Monte Carlo method and the continuum and lattice
versions of the fixed-node method. The main distinctions stem from the
differences in the state space in which the random walk occurs and in the
manner in which the random walkers are constrained. One consequence is that in
the constrained-path method the so-called mixed estimator for the energy is not
an upper bound to the exact energy, as previously claimed. Several ways of
producing an energy upper bound are given, and relevant methodological aspects
are illustrated with simple examples.Comment: 28 pages, REVTEX, 5 ps figure
Exact bounds on the ground-state energy of the infinite-U Hubbard model
We give upper and lower bounds for the ground-state energy of the infinite-U
Hubbard model. In two dimensions, using these bounds we are able to rule out
the possibility of phase separation between the undoped-insulating state and an
hole-rich state.Comment: 2 pages, 1 figure, to appear in Phys. Rev.
Screening, Coulomb pseudopotential, and superconductivity in alkali-doped Fullerenes
We study the static screening in a Hubbard-like model using quantum Monte
Carlo. We find that the random phase approximation is surprisingly accurate
almost up to the Mott transition. We argue that in alkali-doped Fullerenes the
Coulomb pseudopotential is not very much reduced by retardation
effects. Therefore efficient screening is important in reducing
sufficiently to allow for an electron-phonon driven superconductivity. In this
way the Fullerides differ from the conventional picture, where retardation
effects play a major role in reducing the electron-electron repulsion.Comment: 4 pages RevTeX with 2 eps figures, additional material available at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
Phase separation and enhanced charge-spin coupling near magnetic transitions
The generic changes of the electronic compressibility in systems which show
magnetic instabilities is studied. It is shown that, when going into the
ordered phase, the compressibility is reduced by an amount comparable to the
its original value, making charge instabilities also possible. We discuss,
within this framework, the tendency towards phase separation of the double
exchange systems, the pyrochlores, and other magnetic materials
Phase separation in the 2D Hubbard model: a fixed-node quantum Monte Carlo study
Fixed-node Green's function Monte Carlo calculations have been performed for
very large 16x6 2D Hubbard lattices, large interaction strengths U=10,20, and
40, and many (15-20) densities between empty and half filling. The nodes were
fixed by a simple Slater-Gutzwiller trial wavefunction. For each value of U we
obtained a sequence of ground-state energies which is consistent with the
possibility of a phase separation close to half-filling, with a hole density in
the hole-rich phase which is a decreasing function of U. The energies suffer,
however, from a fixed-node bias: more accurate nodes are needed to confirm this
picture. Our extensive numerical results and their test against size, shell,
shape and boundary condition effects also suggest that phase separation is
quite a delicate issue, on which simulations based on smaller lattices than
considered here are unlikely to give reliable predictions.Comment: 4 pages, 1 figure; revised version, more data point
Phase Separation Models for Cuprate Stripe Arrays
An electronic phase separation model provides a natural explanation for a
large variety of experimental results in the cuprates, including evidence for
both stripes and larger domains, and a termination of the phase separation in
the slightly overdoped regime, when the average hole density equals that on the
charged stripes. Several models are presented for charged stripes, showing how
density waves, superconductivity, and strong correlations compete with quantum
size effects (QSEs) in narrow stripes. The energy bands associated with the
charged stripes develop in the middle of the Mott gap, and the splitting of
these bands can be understood by considering the QSE on a single ladder.Comment: significant revisions: includes island phase, 16 eps figures, revte
Multigene signatures for early breast cancer in clinical practice: A report of the Lombardy genomic assays for breast cancer working group
The increasing understanding of breast cancer biology has provided the basis for the development of multigene signatures aimed to improve the capability of clinicians to assess patients' prognostication and risk stratification. Incorporating these tools in clinical practice has profoundly impacted on the decision-making process for the adjuvant therapy of patients with ER+/HER2- early breast cancer and the results from prospective adjuvant trials have strengthened the clinical utility of multigene signatures in this setting. In July 2019, Lombardy was the first Region in Italy to reimburse genomic testing for patients with ER+/HER2- early breast cancer. Three years later, a group of investigators from six referral Cancer Centers in Lombardy convened to debate the use of multigene signatures in clinical practice and share their own experience with the tests after reimbursement. Here, we reviewed relevant data on the role of multigene signatures in tailoring adjuvant chemotherapy for patients with ER+/HER2- early breast cancer and discussed about the optimal use of these assays in current clinical practice. As the treatment landscape of early breast cancer evolves and novel questions about the possible additional applications of multigene assays arise, we also provide our viewpoint on the potential implementation of the assays in the evolving scenario ER+/HER2- early breast cancer treatment
Preclinical Evidence of Progesterone as a New Pharmacological Strategy in Human Adrenocortical Carcinoma Cell Lines
- …
