2,848 research outputs found
Recommended from our members
Leukemia Inhibitory Factor Represses GnRH Gene Expression via cFOS during Inflammation in Male Mice.
BackgroundThe mechanisms whereby neuroinflammation negatively affects neuronal function in the hypothalamus are not clear. Our previous study determined that obesity-mediated chronic inflammation elicits sex-specific impairment in reproductive function via reduction in spine density in gonadotropin-releasing hormone (GnRH) neurons. Neuroinflammation and subsequent decrease in GnRH neuron spine density was specific for male mice, while protection in females was independent of ovarian estrogens.MethodsTo examine if neuroinflammation-induced cytokines can directly regulate GnRH gene expression, herein we examined signaling pathways and mechanisms in males in vivo and in GnRH-expressing cell line, GT1-7.ResultsGnRH neurons express cytokine receptors, and chronic or acute neuroinflammation represses GnRH gene expression in vivo. Leukemia inhibitory factor (LIF) in particular represses GnRH expression in GT1-7 cells, while other cytokines do not. STAT3 and MAPK pathways are activated following LIF treatment, but only MAPK pathway, specifically p38α, is sufficient to repress the GnRH gene. LIF induces cFOS that represses the GnRH gene via the -1,793 site in the enhancer region. In vivo, following high-fat diet, cFOS is induced in GnRH neurons and neurons juxtaposed to the leaky blood brain barrier of the organum vasculosum of the lamina terminalis, but not in the neurons further away.ConclusionOur results indicate that the increase in LIF due to neuroinflammation induces cFOS and represses the GnRH gene. Therefore, in addition to synaptic changes in GnRH neurons, neuroinflammatory cytokines directly regulate gene expression and reproductive function, and the specificity for neuronal targets may stem from the proximity to the fenestrated capillaries
Recommended from our members
PACAP induces FSHβ gene expression via EPAC.
Gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are heterodimers of a common α subunit and unique β subunits. Regulation of their levels, primarily by GnRH, is critical for reproductive function. Several other hormones modulate gonadotropin expression, either independently or by modifying the responsiveness to GnRH. Pituitary adenylate cyclase activating peptide (PACAP) is one such hormone. Four-hour treatment of female mouse primary pituitary cells by either GnRH or PACAP induced FSHβ expression, while 24-h treatment repressed FSHβ. Both PACAP and GnRH caused FSH secretion into the medium. In the gonadotropes, PACAP activates primarily Gαs and increases concentration of cAMP, while GnRH primarily functions via Gαq and increases calcium concentration. Herein, we compared PACAP and GnRH signaling pathways that lead to the induction of FSHβ expression. Interestingly, constitutively active Gαs represses LHβ and induces FSHβ expression, while Gαq induces both β-subunits. We determined that FSHβ induction by PACAP requires functional EPAC, a cAMP sensor protein that serves as a guanine exchange factors for small G proteins that then bridges cAMP signaling to MAPK pathway. We further demonstrate that in addition to the prototypical small G protein Ras, two members of the Rho subfamily, Rac and CDC42 are also necessary for PACAP induction of FSHβ, likely via activation of p38 MAPK that leads to induction of cFOS, a critical transcription factor that is necessary and sufficient for FSHβ induction. Therefore, PACAP-induced cAMP pathway leads to MAPK activation that stimulates cFOS induction, to induce the expression of FSHβ subunit and increase FSH concentration
Regulation of reproduction via tight control of gonadotropin hormone levels.
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis
Gonadotropin and kisspeptin gene expression, but not GnRH, are impaired in cFOS deficient mice.
cFOS is a pleiotropic transcription factor, which binds to the AP1 site in the promoter of target genes. In the pituitary gonadotropes, cFOS mediates induction of FSHβ and GnRH receptor genes. Herein, we analyzed reproductive function in the cFOS-deficient mice to determine its role in vivo. In the pituitary cFOS is necessary for gonadotropin subunit expression, while TSHβ is unaffected. Additionally, cFOS null animals have the same sex-steroid levels, although gametogenesis is impeded. In the brain, cFOS is not necessary for GnRH neuronal migration, axon targeting, cell number, or mRNA levels. Conversely, cFOS nulls, particularly females, have decreased Kiss1 neuron numbers and lower Kiss1 mRNA levels. Collectively, our novel findings suggest that cFOS plays a cell-specific role at multiple levels of the hypothalamic-pituitary-gonadal axis, affecting gonadotropes but not thyrotropes in the pituitary, and kisspeptin neurons but not GnRH neurons in the hypothalamus, thereby contributing to the overall control of reproduction
De la prensa tradicional a la prensa alternativa vinculada a movimientos sociales emergentes en la era de la digitalización
Frente a un paisaje mediático dominado por grandes corporaciones, y una
poderosa oligarquía familiar que controla los dos periódicos de mayor circulación
y el 80 por ciento del dólar publicitario, Puerto Rico vive un momento único en su
historia contemporánea: la oportunidad de quebrar el monopolio informativo. Y
esto se debe, en buena medida, a la internet, y claro está, a los procesos de
alfabetización y capacitación en tecnologías digitales que generan los nuevos
movimientos sociales.While Puerto Rico's media landscape is still controlled by huge corporate
organizations, mainly by a strong oligarchic family that owns the two most
important newspapers and 80 percent of the income from publicity in the Island,
Puerto Rico faces a crucial moment in its recent history: the opportunity to
challenge the monopoly of information. This possibility is based on how social
movements have reacted to the recent and rapid changes brought by the
internet, developing important alphabetization processes on new digital media
Mexico's new general law on archives could jeopardise research, journalism, and transparency
By placing archives under direct control of the executive and creating retroactive rules to define the historical, Mexico's proposed General Law on Archives could damage academic, journalistic, and popular access to collective memory, writes Alejandro de Coss Corzo
- …
