3,650 research outputs found

    Coherent structures in fully-developed pipe turbulence

    Get PDF
    A turbulent mean profile for pipe flow is prescribed which closely matches experimental observations. The nature of perturbations superimposed upon this profile is then considered. Optimal growth calculations predict two distinct classes of structures, clearly associated with near-wall and large-scale structures. Quantitative correspondence of the spanwise wavelength of wall-structures with experimental observations is very good. The response to harmonic forcing is also considered, and the linear growth tested with direct numerical simulation of forced turbulence. Despite the very simple eddy viscosity assumption, this linear approach predicts well the surprisingly large growth of outer-scale modes in the bulk flow. Un profil moyen turbulent est prescrit dans une conduite cylindrique, en adequation avec les observations experimentales. Nous considerons ensuite la nature des perturbations a cet ecoulement synthetique. Le calcul des croissances optimales predit deux types de structures, associees respectivement aux structures de proche-paroi et de grande echelle. Un excellent accord quantitatif est trouve avec les resultats experimentaux quant a la longueur d'onde transversale. La reponse harmonique est egalement etudiee, et la croissance lineaire observee comparee a des simulations numeriques directes de turbulence forcee. Malgre de l'hypothese simple de type `Eddy viscosity', cette approche lineaire predit efficacement la croissance spectaculaire des modes de grande echelle au coeur de l'ecoulement.Comment: 5 pages; Congres Francais de Mecanique, Marseille (2009

    A test of first order scaling in Nf =2 QCD: a progress report

    Full text link
    We present the status of our analysis on the order of the finite temperature transition in QCD with two flavors of degenerate fermions. Our new simulations on large lattices support the hypothesis of the first order nature of the transition, showing a preliminary two state signal. We will discuss the implications and the next steps in our analysis.Comment: 6 pages, 4 figures. Talk presented at The XXVI International Symposium on Lattice Field Theory, July 14 - 19, 2008 - Williamsburg, Virginia, US

    On the phase diagram of the Higgs SU(2) model

    Full text link
    The Higgs SU(2) model with fixed Higgs length is usually believed to have two different phases at high gauge coupling (\beta), separated by a line of first order transitions but not distinuguished by any typical symmetry associated with a local order parameter, as first proved by Fradkin and Shenker. We show that in regions of the parameter space where it is usually supposed to be a first order phase transition only a smooth crossover is in fact present.Comment: 6 pages, 6 figures. Talk presented at The XXVI International Symposium on Lattice Field Theory, July 14 - 19, 2008 - Williamsburg, Virginia, US

    A test of first order scaling in Nf=2 QCD

    Get PDF
    We complete our analysis of Nf=2 QCD based on the lattice staggered fermion formulation. Using a series of Monte Carlo simulations at fixed (amq*Ls^yh) one is able to test the universality class with given critical exponent yh. This strategy has been used to test the O(4) universality class and it has been presented at the previous Lattice conferences. No agreement was found with simulations in the mass range amq=[0.01335,0.15] using lattices with Ls=16 up to 32 and Lt=4. With the same strategy, we now investigate the possibility of a first order transition using a new set of Monte Carlo data corresponding to yh=3 in the same mass and volume range as the one used for O(4). A substantial agreement is observed both in the specific heat scaling and in the scaling of the chiral condensate, while the chiral susceptibilities still presents visible deviation from scaling in the mass range explored.Comment: 5 pages, 6 figures, Presented at the XXV International Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg, German

    Two flavor QCD and confinement - II

    Full text link
    This paper is part of a program of investigation of the chiral transition in Nf=2 QCD, started in Phys.Rev.D72:114510,2005. Progress is reported on the understanding of some possible systematic errors. A direct test of first order scaling is presented.Comment: 7 pages, 6 figure

    Zinc transporter 8 and MAP3865c homologous epitopes are recognized at T1D onset in Sardinian children

    Get PDF
    Our group has recently demonstrated that Mycobacterium avium subspecies paratuberculosis (MAP) infection significantly associates with T1D in Sardinian adult patients. Due to the potential role played by MAP in T1D pathogenesis, it is relevant to better characterize the prevalence of anti-MAP antibodies (Abs) in the Sardinian population, studying newly diagnosed T1D children. Therefore, we investigated the seroreactivity against epitopes derived from the ZnT8 autoantigen involved in children at T1D onset and their homologous sequences of the MAP3865c protein. Moreover, sera from all individuals were tested for the presence of Abs against: the corresponding ZnT8 C-terminal region, the MAP specific protein MptD, the T1D autoantigen GAD65 and the T1D unrelated Acetylcholine Receptor. The novel MAP3865c281–287 epitope emerges here as the major C-terminal epitope recognized. Intriguingly ZnT8186–194 immunodominant peptide was cross-reactive with the homologous sequences MAP3865c133–141, strengthening the hypothesis that MAP could be an environmental trigger of T1D through a molecular mimicry mechanism. All eight epitopes were recognized by circulating Abs in T1D children in comparison to healthy controls, suggesting that these Abs could be biomarkers of T1D. It would be relevant to investigate larger cohorts of children, followed over time, to elucidate whether Ab titers against these MAP/Znt8 epitopes wane after diagnosis

    On a self-sustained process at large scale in the turbulent channel flow

    Get PDF
    Large-scale motions, important in turbulent shear flows, are frequently attributed to the interaction of structures at smaller scale. Here we show that, in a turbulent channel at Re_{\tau} \approx 550, large-scale motions can self-sustain even when smaller-scale structures populating the near-wall and logarithmic regions are artificially quenched. This large-scale self-sustained mechanism is not active in periodic boxes of width smaller than Lz ~ 1.5h or length shorter than Lx ~ 3h which correspond well to the most energetic large scales observed in the turbulent channel

    Dissipative effects on the sustainment of a magnetorotational dynamo in Keplerian shear flow

    Get PDF
    The magnetorotational (MRI) dynamo has long been considered one of the possible drivers of turbulent angular momentum transport in astrophysical accretion disks. However, various numerical results suggest that this dynamo may be difficult to excite in the astrophysically relevant regime of magnetic Prandtl number (Pm) significantly smaller than unity, for reasons currently not well understood. The aim of this article is to present the first results of an ongoing numerical investigation of the role of both linear and nonlinear dissipative effects in this problem. Combining a parametric exploration and an energy analysis of incompressible nonlinear MRI dynamo cycles representative of the transitional dynamics in large aspect ratio shearing boxes, we find that turbulent magnetic diffusion makes the excitation and sustainment of this dynamo at moderate magnetic Reynolds number (Rm) increasingly difficult for decreasing Pm. This results in an increase in the critical Rm of the dynamo for increasing kinematic Reynolds number (Re), in agreement with earlier numerical results. Given its very generic nature, we argue that turbulent magnetic diffusion could be an important determinant of MRI dynamo excitation in disks, and may also limit the efficiency of angular momentum transport by MRI turbulence in low Pm regimes.Comment: 7 pages, 6 figure

    Experimental study of the stabilization of Tollmien-Schlichting waves by finite amplitude streaks

    No full text
    International audienceIt has recently been found by using temporal and spatial numerical simulations that steady optimal streaks of moderate amplitude, i.e., sufficiently large but not exceeding the critical amplitude for the inflectional instability, are able to reduce the growth of Tollmien-Schlichting (TS) waves up to their complete suppression. This investigation aims at experimentally verifying this stabilizing effect by generating stable and symmetric, close to sinusoidal, streaks of moderate amplitudes (~12% of the free-stream velocity) by means of a spanwise array of cylindrical roughness elements. The three-dimensional (3D) streaky base flow is then subjected to a secondary instability generated through a spanwise slot in the plate by means of regulated blowing and suction. In this study the stabilizing role of the streaks on TS waves is unambiguously confirmed and by increasing the height of the roughness elements, thus inducing larger amplitude streaks, we are also able to show that the stabilizing action on the TS waves increases with the streak amplitude. These results are the first to confirm the numerical predictions reported in earlier works. The full cross-stream plane has been measured at different downstream positions allowing a complete evaluation and comparison of the different amplitude measures used in previous experimental works. Furthermore, theoretical impulse response analysis and stability calculations are applied to the present experimental streaky base flow enabling a qualitative comparison of the 3D modulated TS wave distribution. © 2005 American Institute of Physics

    Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer

    No full text
    International audienceAn experimental and theoretical investigation aimed at describing the nonmodal growth of steady and spanwise periodic streamwise streaks in a flat plate boundary layer is presented. Stable laminar streaks are experimentally generated by means of a spanwise periodic array of small cylindrical roughness elements fixed on the plate. The streamwise evolution of the streaks is measured and it is proved that, except in a small region near the roughness elements, they obey the boundary layer scalings. The maximum achievable amplitude is mainly determined by the relative height of the roughness elements. Results are compared with numerical simulations of optimal and suboptimal boundary layer streaks. The theory is able to elucidate some of the discrepancies recently noticed between experimentally realizable nonmodal growth and optimal perturbation theory. The key factor is found to be the wall normal location and the extension of the laminar standing streamwise vortices inducing the streaks. The differences among previous experimental works can be explained by different dominating streak generation mechanisms which can be linked to the geometry and to the ratio between the roughness height and the boundary layer scale. © 2004 American Institute of Physics
    corecore