4,151 research outputs found

    Electron and metastable density measurements in argon with a laser heterodyne interferometer

    Get PDF
    Electron and metastable density measurements in argon discharge tube using laser heterodyne interferomete

    Menopause leads to elevated expression of macrophage-associated genes in the aging frontal cortex: rat and human studies identify strikingly similar changes.

    Get PDF
    BACKGROUND The intricate interactions between the immune, endocrine and central nervous systems shape the innate immune response of the brain. We have previously shown that estradiol suppresses expression of immune genes in the frontal cortex of middle-aged ovariectomized rats, but not in young ones reflecting elevated expression of these genes in middle-aged, ovarian hormone deficient animals. Here, we explored the impact of menopause on the microglia phenotype capitalizing on the differential expression of macrophage-associated genes in quiescent and activated microglia. METHODS We selected twenty-three genes encoding phagocytic and recognition receptors expressed primarily in microglia, and eleven proinflammatory genes and followed their expression in the rat frontal cortex by real-time PCR. We used young, middle-aged and middle-aged ovariectomized rats to reveal age- and ovariectomy-related alterations. We analyzed the expression of the same set of genes in the postcentral and superior frontal gyrus of pre- and postmenopausal women using raw microarray data from our previous study. RESULTS Ovariectomy caused up-regulation of four classic microglia reactivity marker genes including Cd11b, Cd18, Cd45 and Cd86. The change was reversible since estradiol attenuated transcriptional activation of the four marker genes. Expression of genes encoding phagocytic and toll-like receptors such as Cd11b, Cd18, C3, Cd32, Msr2 and Tlr4 increased, whereas scavenger receptor Cd36 decreased following ovariectomy. Ovarian hormone deprivation altered the expression of major components of estrogen and neuronal inhibitory signaling which are involved in the control of microglia reactivity. Strikingly similar changes took place in the postcentral and superior frontal gyrus of postmenopausal women. CONCLUSIONS Based on the overlapping results of rat and human studies we propose that the microglia phenotype shifts from the resting toward the reactive state which can be characterized by up-regulation of CD11b, CD14, CD18, CD45, CD74, CD86, TLR4, down-regulation of CD36 and unchanged CD40 expression. As a result of this shift, microglial cells have lower threshold for subsequent activation in the forebrain of postmenopausal women

    Loss of Cln3 Function in the Social Amoeba Dictyostelium discoideum Causes Pleiotropic Effects That Are Rescued by Human CLN3

    Get PDF
    The neuronal ceroid lipofuscinoses (NCL) are a group of inherited, severe neurodegenerative disorders also known as Batten disease. Juvenile NCL (JNCL) is caused by recessive loss-of-function mutations in CLN3, which encodes a transmembrane protein that regulates endocytic pathway trafficking, though its primary function is not yet known. The social amoeba Dictyostelium discoideum is increasingly utilized for neurological disease research and is particularly suited for investigation of protein function in trafficking. Therefore, here we establish new overexpression and knockout Dictyostelium cell lines for JNCL research. Dictyostelium Cln3 fused to GFP localized to the contractile vacuole system and to compartments of the endocytic pathway. cln3− cells displayed increased rates of proliferation and an associated reduction in the extracellular levels and cleavage of the autocrine proliferation repressor, AprA. Mid- and late development of cln3− cells was precocious and cln3− slugs displayed increased migration. Expression of either Dictyostelium Cln3 or human CLN3 in cln3− cells suppressed the precocious development and aberrant slug migration, which were also suppressed by calcium chelation. Taken together, our results show that Cln3 is a pleiotropic protein that negatively regulates proliferation and development in Dictyostelium. This new model system, which allows for the study of Cln3 function in both single cells and a multicellular organism, together with the observation that expression of human CLN3 restores abnormalities in Dictyostelium cln3− cells, strongly supports the use of this new model for JNCL research

    The Progression of β-amyloid Deposition in the Frontal Cortex of the Aged Canine

    Get PDF
    Brains from 41 aged canines (≥10 years of age) were examined immunohistochemically to characterize the laminar distribution and age-related progression of β-amyloid (Aβ) in frontal cortex. We classified the Aβ patterns into four distinct types. Type I was characterized by small, faint deposits of Aβ in deep cortical layers. Type II consisted of diffuse deposits of Aβ mainly in layers V and VI. Type III had both dense plaques in superficial layers, and diffuse deposits in deep layers. Finally, Type IV had solely dense plaques throughout all layers of cortex. We compared the Aβ distribution pattern between the Old canines (10–15 years, n=22) and the Very Old canines (\u3e15 years, n=19). The Old group primarily had negative staining, or Type I and Type II patterns of amyloid deposition (73%). Conversely, the Very Old group had predominantly Types II, III and IV deposits (89.5%), a difference that was significant (Pβ deposition in canine frontal cortex is a progressive age-related process beginning with diffuse deposits in the deep cortical layers followed by the development of deposits in outer layers. In support of this hypothesis, the deeper layer diffuse plaques in the Very Old group of dogs also contain the largest proportion of β-amyloid with an isomerized aspartic acid residue at position 7, indicating that these deposits had been present for some time. We also observed fiber-like Aβ immunoreactivity within regions of diffuse Aβ deposits. These fibers appeared to be degenerating neurites, which were negative for hyperphosphorylated tau. Therefore, these fibers may represent a very early form of neuritic change that precede tau hyperphosphorylation or develop by an alternative pathway

    Exercise Increases Neural Stem Cell Number in a GH-Dependent Manner, Augmenting the Regenerative Response in Aged Mice

    Get PDF
    The exercise-induced enhancement of learning and memory, and its ability to slow age-related cognitive decline in humans led us to investigate whether running stimulates periventricular (PVR) neural stem cells (NSCs) in aging mice, thereby augmenting the regenerative capacity of the brain. To establish a benchmark of normal aging on endogenous NSCs, we harvested the PVR from serial vibratome sections through the lateral ventricles of juvenile (6-8 weeks), 6, 12, 18, and 24-month-old mice, culturing the cells in the neural colony forming cell assay. A significant decline in NSC frequency was apparent by 6-months (~40%) ultimately resulting in a ~90% reduction by 24-months. Concurrent with this decline was a progressive loss in regenerative capacity, as reflected by an incomplete repopulation of neurosphere-forming cells following gamma cell irradiation-induced depletion of the PVR. However voluntary exercise (i.e. 21 days of running) significantly increased NSC frequency in mic

    Transcriptomic analysis of differential host gene expression upon uptake of symbionts: a case study with Symbiodinium and the major bioeroding sponge Cliona varians

    Get PDF
    Background: We have a limited understanding of genomic interactions that occur among partners for many symbioses. One of the most important symbioses in tropical reef habitats involves Symbiodinium. Most work examining Symbiodinium-host interactions involves cnidarian partners. To fully and broadly understand the conditions that permit Symbiodinium to procure intracellular residency, we must explore hosts from different taxa to help uncover universal cellular and genetic strategies for invading and persisting in host cells. Here, we present data from gene expression analyses involving the bioeroding sponge Cliona varians that harbors Clade G Symbiodinium. Results: Patterns of differential gene expression from distinct symbiont states (“normal”, “reinfected”, and “aposymbiotic”) of the sponge host are presented based on two comparative approaches (transcriptome sequencing and suppressive subtractive hybridization (SSH)). Transcriptomic profiles were different when reinfected tissue was compared to normal and aposymbiotic tissue. We characterized a set of 40 genes drawn from a pool of differentially expressed genes in “reinfected” tissue compared to “aposymbiotic” tissue via SSH. As proof of concept, we determined whether some of the differentially expressed genes identified above could be monitored in sponges grown under ecologically realistic field conditions. We allowed aposymbiotic sponge tissue to become re-populated by natural pools of Symbiodinium in shallow water flats in the Florida Keys, and we analyzed gene expression profiles for two genes found to be increased in expression in “reinfected” tissue in both the transcriptome and via SSH. These experiments highlighted the experimental tractability of C. varians to explore with precision the genetic events that occur upon establishment of the symbiosis. We briefly discuss lab- and field-based experimental approaches that promise to offer insights into the co-opted genetic networks that may modulate uptake and regulation of Symbiondinium populations in hospite. Conclusions: This work provides a sponge transcriptome, and a database of putative genes and genetic pathways that may be involved in Symbiodinium interactions. The relative patterns of gene expression observed in these experiments will need to be evaluated on a gene-by-gene basis in controlled and natural re-infection experiments. We argue that sponges offer particularly useful characteristics for discerning essential dimensions of the Symbiodinium niche. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-376) contains supplementary material, which is available to authorized users
    corecore