169 research outputs found

    Can low metallicity binaries avoid merging?

    Full text link
    Rapid mass transfer in a binary system can drive the accreting star out of thermal equilibrium, causing it to expand. This can lead to a contact system, strong mass loss from the system and possibly merging of the two stars. In low metallicity stars the timescale for heat transport is shorter due to the lower opacity. The accreting star can therefore restore thermal equilibrium more quickly and possibly avoid contact. We investigate the effect of accretion onto main sequence stars with radiative envelopes with different metallicities. We find that a low metallicity (Z<0.001), 4 solar mass star can endure a 10 to 30 times higher accretion rate before it reaches a certain radius than a star at solar metallicity. This could imply that up to two times fewer systems come into contact during rapid mass transfer when we compare low metallicity. This factor is uncertain due to the unknown distribution of binary parameters and the dependence of the mass transfer timescale on metallicity. In a forthcoming paper we will present analytic fits to models of accreting stars at various metallicities intended for the use in population synthesis models.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New Mexico, July 16-20, 2007, 3 pages, 2 figure

    Characterizing a cluster's dynamic state using a single epoch of radial velocities

    Full text link
    Radial velocity measurements can be used to constrain the dynamical state of a stellar cluster. However, for clusters with velocity dispersions smaller than a few km/s the observed radial velocity distribution tends to be dominated by the orbital motions of binaries rather than the stellar motions through the potential well of the cluster. Our goal is to characterize the intrinsic velocity distribution of a cluster from a single epoch of radial velocity data, even for a cluster with a velocity dispersion of a fraction of a km/s, using a maximum likelihood procedure. Assuming a period, mass ratio, and eccentricity distribution for the binaries in the observed cluster this procedure fits a dynamical model describing the velocity distribution for the single stars and center of masses of the binaries, simultaneously with the radial velocities caused by binary orbital motions, using all the information available in the observed velocity distribution. We find that the fits to the intrinsic velocity distribution depend only weakly on the binary properties assumed, so the uncertainty in the fitted parameters tends to be dominated by statistical uncertainties. Based on Monte Carlo simulations we provide an estimate of how these statistical uncertainties vary with the velocity dispersion, binary fraction, and the number of observed stars, which can be used to estimate the sample size needed to reach a specific accuracy. Finally we test the method on the well-studied open cluster NGC 188, showing that it can reproduce a velocity dispersion of only 0.5 km/s using a single epoch of the multi-epoch radial velocity data. If the binary period, mass ratio, and eccentricity distribution of the observed stars are roughly known, this procedure can be used to correct for the effect of binary orbital motions on an observed velocity distribution. [Abridged]Comment: 11 pages, 6 figures, accepted by A&

    A galactic-scale origin for stellar clustering

    Full text link
    We recently presented a model for the cluster formation efficiency (CFE), i.e. the fraction of star formation occurring in bound stellar clusters. It utilizes the idea that the formation of stars and stellar clusters occurs across a continuous spectrum of ISM densities. Bound stellar clusters naturally arise from the high-density end of this density spectrum. Due to short free-fall times, these high-density regions can achieve high star formation efficiencies (SFEs) and can be unaffected by gas expulsion. Lower-density regions remain gas-rich and substructured, and are unbound upon gas expulsion. The model enables the CFE to be calculated using galactic-scale observables. I present a brief summary of the model physics, assumptions and caveats, and show that it agrees well with observations. Fortran and IDL routines for calculating the CFE are publicly available at http://www.mpa-garching.mpg.de/cfe.Comment: 4 pages, 1 figure; to appear in The Labyrinth of Star Formation, (eds.) D. Stamatellos, S. Goodwin, and D. Ward-Thompson, Springer, in pres

    IN-SYNC. V. Stellar kinematics and dynamics in the Orion A Molecular Cloud

    Full text link
    The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high resolution near infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of 2700\sim2700 stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities (vrv_r). The young stellar population remains kinematically associated with the molecular gas, following a 10kms1\sim10\:{\rm{km\:s}}^{-1} gradient along filament. However, near the center of the region, the vrv_r distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of co-located stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion σv\sigma_v varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for on-going expansion, from a vrv_r--extinction correlation. In the southern filament, σv\sigma_v is 2\sim2--33 times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar sub-populations, detached from the gas. On the contrary, σv\sigma_v decreases towards L1641S, where the population is again in agreement with a virial state.Comment: 14 pages, 13 figures, ApJ accepte

    The Gaia -ESO Survey : Empirical determination of the precision of stellar radial velocities and projected rotation velocities

    Get PDF
    Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and v sin i using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and v sin i, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the v sin i precision for stars in young clusters, as a function of S/N, v sin i and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 kms-1, dependent on instrumental configuration.Peer reviewedFinal Accepted Versio

    GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Get PDF
    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation sub-grid models. Two such models are explored: (1) Density-Regulated, i.e., fixed efficiency per free-fall time above a set density threshold; (2) Magnetically- Regulated, i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial sub-structure and more disturbed kinematics
    corecore