169 research outputs found
Can low metallicity binaries avoid merging?
Rapid mass transfer in a binary system can drive the accreting star out of
thermal equilibrium, causing it to expand. This can lead to a contact system,
strong mass loss from the system and possibly merging of the two stars. In low
metallicity stars the timescale for heat transport is shorter due to the lower
opacity. The accreting star can therefore restore thermal equilibrium more
quickly and possibly avoid contact.
We investigate the effect of accretion onto main sequence stars with
radiative envelopes with different metallicities. We find that a low
metallicity (Z<0.001), 4 solar mass star can endure a 10 to 30 times higher
accretion rate before it reaches a certain radius than a star at solar
metallicity. This could imply that up to two times fewer systems come into
contact during rapid mass transfer when we compare low metallicity. This factor
is uncertain due to the unknown distribution of binary parameters and the
dependence of the mass transfer timescale on metallicity. In a forthcoming
paper we will present analytic fits to models of accreting stars at various
metallicities intended for the use in population synthesis models.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New
Mexico, July 16-20, 2007, 3 pages, 2 figure
Characterizing a cluster's dynamic state using a single epoch of radial velocities
Radial velocity measurements can be used to constrain the dynamical state of
a stellar cluster. However, for clusters with velocity dispersions smaller than
a few km/s the observed radial velocity distribution tends to be dominated by
the orbital motions of binaries rather than the stellar motions through the
potential well of the cluster. Our goal is to characterize the intrinsic
velocity distribution of a cluster from a single epoch of radial velocity data,
even for a cluster with a velocity dispersion of a fraction of a km/s, using a
maximum likelihood procedure. Assuming a period, mass ratio, and eccentricity
distribution for the binaries in the observed cluster this procedure fits a
dynamical model describing the velocity distribution for the single stars and
center of masses of the binaries, simultaneously with the radial velocities
caused by binary orbital motions, using all the information available in the
observed velocity distribution. We find that the fits to the intrinsic velocity
distribution depend only weakly on the binary properties assumed, so the
uncertainty in the fitted parameters tends to be dominated by statistical
uncertainties. Based on Monte Carlo simulations we provide an estimate of how
these statistical uncertainties vary with the velocity dispersion, binary
fraction, and the number of observed stars, which can be used to estimate the
sample size needed to reach a specific accuracy. Finally we test the method on
the well-studied open cluster NGC 188, showing that it can reproduce a velocity
dispersion of only 0.5 km/s using a single epoch of the multi-epoch radial
velocity data. If the binary period, mass ratio, and eccentricity distribution
of the observed stars are roughly known, this procedure can be used to correct
for the effect of binary orbital motions on an observed velocity distribution.
[Abridged]Comment: 11 pages, 6 figures, accepted by A&
A galactic-scale origin for stellar clustering
We recently presented a model for the cluster formation efficiency (CFE),
i.e. the fraction of star formation occurring in bound stellar clusters. It
utilizes the idea that the formation of stars and stellar clusters occurs
across a continuous spectrum of ISM densities. Bound stellar clusters naturally
arise from the high-density end of this density spectrum. Due to short
free-fall times, these high-density regions can achieve high star formation
efficiencies (SFEs) and can be unaffected by gas expulsion. Lower-density
regions remain gas-rich and substructured, and are unbound upon gas expulsion.
The model enables the CFE to be calculated using galactic-scale observables. I
present a brief summary of the model physics, assumptions and caveats, and show
that it agrees well with observations. Fortran and IDL routines for calculating
the CFE are publicly available at http://www.mpa-garching.mpg.de/cfe.Comment: 4 pages, 1 figure; to appear in The Labyrinth of Star Formation,
(eds.) D. Stamatellos, S. Goodwin, and D. Ward-Thompson, Springer, in pres
IN-SYNC. V. Stellar kinematics and dynamics in the Orion A Molecular Cloud
The kinematics and dynamics of young stellar populations enable us to test
theories of star formation. With this aim, we continue our analysis of the
SDSS-III/APOGEE IN-SYNC survey, a high resolution near infrared spectroscopic
survey of young clusters. We focus on the Orion A star-forming region, for
which IN-SYNC obtained spectra of stars. In Paper IV we used these
data to study the young stellar population. Here we study the kinematic
properties through radial velocities (). The young stellar population
remains kinematically associated with the molecular gas, following a
gradient along filament. However, near the center
of the region, the distribution is slightly blueshifted and asymmetric;
we suggest that this population, which is older, is slightly in foreground. We
find evidence for kinematic subclustering, detecting statistically significant
groupings of co-located stars with coherent motions. These are mostly in the
lower-density regions of the cloud, while the ONC radial velocities are
smoothly distributed, consistent with it being an older, more dynamically
evolved cluster. The velocity dispersion varies along the filament.
The ONC appears virialized, or just slightly supervirial, consistent with an
old dynamical age. Here there is also some evidence for on-going expansion,
from a --extinction correlation. In the southern filament, is
-- times larger than virial in the L1641N region, where we infer a
superposition along the line of sight of stellar sub-populations, detached from
the gas. On the contrary, decreases towards L1641S, where the
population is again in agreement with a virial state.Comment: 14 pages, 13 figures, ApJ accepte
The Gaia -ESO Survey : Empirical determination of the precision of stellar radial velocities and projected rotation velocities
Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and v sin i using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and v sin i, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the v sin i precision for stars in young clusters, as a function of S/N, v sin i and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 kms-1, dependent on instrumental configuration.Peer reviewedFinal Accepted Versio
GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation
We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation sub-grid models. Two such models are explored: (1) Density-Regulated, i.e., fixed efficiency per free-fall time above a set density threshold; (2) Magnetically- Regulated, i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial sub-structure and more disturbed kinematics
- …
