370 research outputs found

    Titan's Surface Temperatures from Cassini CIRS

    Get PDF
    The surface brightness temperature of Titan can be measured from Cassini through a spectral window at 19 microns where the atmosphere is low in opacity. The Composite Infrared Spectrometer (CIRS) on Cassini observes this wavelength in its far-infrared channel. Because the Cassini tour has provided global coverage and a range of viewing geometries, CIRS has been able to go beyond the earlier flyby results of Voyager IRIS Near the equator, CIRS measures the zonally-averaged surface brightness temperature to be 917 K, very close to the temperature found at the surface by Huygens. Latitude maps show that Titan's surface temperatures drop off by about 2 K toward the south and by about 3 K toward the north. This temperature distribution is consistent with Titan's late northern winter when the data were taken. As the seasons progress, CIRS is continuing to search for corresponding changes in the temperatures of the surface and lower atmosphere. CIRS is also extending global mapping to both latitude and longitude to look for correlations between surface temperatures and geological features

    Surface Temperatures on Titan; Changes During the Cassini Mission

    Get PDF
    Surface brightness temperatures on Titan measured by the Composite Infrared Spectrometer (CIRS) aboard Cassini span the period from late northern winter to early spring. The CIRS observations cover all latitudes and can be used to study meridional changes with season. CIRS previously reported surface temperatures from 2004-2008 which were 93.7 K at the equator with decreases of 2 K toward the south pole and 3 K toward the north pole'. From a comparison of the equinox period with the earlier data, CIRS can now detect a seasonal shift in the latitudinal distribution of temperatures. Around the time of the equinox the meridional distribution was more symmetric about the equator than had been found earlier in the mission. The equatorial surface temperatures remained close to 94 K, but in the south the temperatures had decreased by about 0.5 K and in the north had increased by about 0.5 K. The CIRS equinox results are similar to what was seen near the previous vernal equinox by Voyager IRIS Z. The observed surface temperatures can help constrain the type of surface material by comparison with predictions from general circulation models. Of the three cases treated by Tokano t , our measurements most closely match a porous-ice regolith. As Cassini continues through Titan's northern spring CIRS will extend its temporal and spatial coverage and will continue to search for seasonal variations in surface temperature

    The Impact of Workplace Conditions on Firm Performance

    Get PDF
    This paper estimates the impact of work environment health and safety practice on firm performance, and examines which firm-characteristic factors are associated with good work conditions. We use Danish longitudinal register matched employer-employee data, merged with firm business accounts and detailed cross-sectional survey data on workplace conditions. This enables us to address typical econometric problems such as omitted variables bias or endogeneity in estimating i) standard production functions augmented with work environment indicators and aggregate employee characteristics and ii) firm mean wage regressions on the same explanatory variables. Our findings suggest that improvement in some of the physical dimensions of the work health and safety environment (specifically, “internal climate” and “repetitive and strenuous activity”) strongly impacts the firm productivity, whereas “internal climate” problems are the only workplace hazards compensated for by higher mean wages

    Seasonal Changes in Titan's Surface Temperatures

    Get PDF
    Cassini's extended mission has provided the opportunity to search for seasonal variations on Titan. In particular, surface temperatures are expected to have shifted significantly in latitude during the completed portion of the mission. Spectra recorded by the Composite Infrared Spectrometer (CIRS) during the nominal mission (2004-08) and the Equinox mission. (2008-10) have already shown changes in temperature. CIRS has detected a seasonal shift in the latitudinal distribution of surface brightness temperatures by comparing zonal averages from two time segments, one period in late northern winter centered on L(sub s) approximately 335 deg and a second period centered on the equinox (L(sub s) approximately 0 deg.). The earlier period had a meridional distribution similar to that previously reported: 93.5 K at the equator, 91.7 K at 85 S and 899 K at 85 N. The newly measured distribution near equinox shows a cooling in the south and a warming in the north, both by about 0.5 K. We estimate that. the centroid of the distribution moved from approximately 16 S to 7 S between the two periods. This gives a seasonal lag behind insolation of delta L(sub s) approximately 13 deg. The CIRS equinox results are consistent with those of Voyager IRIS, which encountered Titan in November 1980, just following the previous northern equinox (L(sub s) = 10 deg.). When compared with predictions from general circulation models, seasonal variations of surface temperature can help constrain the identification of surface materials. Our measurements most closely match the case of a porous ice regolith treated by Tokano, but with some apparent differences between the northern and southern hemispheres. CIRS will extend its study of seasonal variations in surface temperature on Titan as Cassini continues through northern spring

    Seasonal Changes in Surface Temperatures on Titan

    Get PDF
    The surface brightness temperatures on Titan have been measured by the Composite Infrared Spectrometer (CIRS) aboard Cassini during the period spanning late northern winter through vernal equinox. CIRS observes radiance from the surface through a spectral window at 19 microns where the atmosphere has an opacity minimum [I]. CIRS is now seeing a shift in the latitudinal distribution of temperatures froth a distinctly warmer south to a more symmetrical north -south pattern, similar to that found by Voyager IRIS [2,3] at the time of the previous vernal equinox. Near the equator the temperatures remain close to the 93.7 K value found at the surface by Huygens [4]. From the equator to the poles the temperature gradients are 2-3 K. When compared with predictions froth general circulation models [5] the measured temperatures and their seasonal changes constrain the possible types of surface material. As Cassini continues through Titan's northern spring CiRS will extend its, global coverage to took for correlations between surface temperatures and albedo and to search for diurnal temperature variation

    Spatial and Temporal Variations in Titan's Surface Temperatures from Cassini CIRS Observations

    Get PDF
    We report a wide-ranging study of Titan's surface temperatures by analysis of the Moon's outgoing radiance through a spectral window in the thermal infrared at 19 mm (530/cm) characterized by lower atmospheric opacity. We begin by modeling Cassini Composite Infrared Spectrometer (CIRS) far infrared spectra collected in the period 2004-2010, using a radiative transfer forward model combined with a non-linear optimal estimation inversion method. At low-latitudes, we agree with the HASI near-surface temperature of about 94 K at 101S (Fulchignoni et al., 2005). We find a systematic decrease from the equator toward the poles, hemispherically asymmetric, of approx. 1 K at 60 deg. south and approx. 3 K at 60 deg. north, in general agreement with a previous analysis of CIRS data and with Voyager results from the previous northern winter. Subdividing the available database, corresponding to about one Titan season, into 3 consecutive periods, small seasonal changes of up to 2 K at 60 deg N became noticeable in the results. In addition, clear evidence of diurnal variations of the surface temperatures near the equator are observed for the first time: we find a trend of slowly increasing temperature from the morning to the early afternoon and a faster decrease during the night. The diurnal change is approx. 1.5 K, in agreement with model predictions for a surface with a thermal inertia between 300 and 600 J/ sq. m s (exp -1/2) / K. These results provide important constraints on coupled surface-atmosphere models of Titan's meteorology and atmospheric dynamic

    Seasonal Changes in Titan's Southern Stratosphere

    Get PDF
    In August 2009 Titan passed through northern spring equinox, and the southern hemisphere passed into fall. Since then, the moon's atmosphere has been closely watched for evidence of the expected seasonal reversal of stratospheric circulation, with increased northern insolation leading to upwelling, and consequent downwelling at southern high latitudes. If the southern winter mirrors the northern winter, this circulation will be traced by increases in short-lived gas species advected downwards from the upper atmosphere to the stratosphere. The Cassini spacecraft in orbit around Saturn carries on board the Composite Infrared Spectrometer (CIRS), which has been actively monitoring the trace gas populations through measurement of the intensity of their infrared emission bands (7-1000 micron). In this presentation we will show fresh evidence from recent CIRS measurements in June 2012, that the shortest-lived and least abundant minor species (C3H4, C4H2, C6H6, HC3N) are indeed increasing dramatically southwards of 50S in the lower stratosphere. Intriguingly, the more stable gases (C2H2, HCN, CO2) have yet to show this trend, and continue to exhibit their 'summer' abundances, decreasing towards the south pole. Possible chemical and dynamical explanations of these results will be discussed , along with the potential of future CIRS measurements to monitor and elucidate these seasonal changes

    Seasonal Changes in Titan's Surface Temperatures

    Get PDF
    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer (CIRS) measured surface radiances at 19 micron in two time periods: one in late northern winter (Ls = 335d eg) and another centered on northern spring equinox (Ls = 0 deg). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between late northern winter and northern spring equinox a shift occurred in the temperature distribution, characterized by a warming of approximately 0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was 93.4 K. We measured a seasonal lag of delta Ls approximately 9 in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 deg S in the relatively cloud-free zone between the mid-latitude and southern cloud regions

    Education, Health and Health-Related Behaviors: Evidence from Higher Education Expansion

    Get PDF
    This study throws light on the potential non-linear effects of education on individual health and health-related behaviors, finding a strong role for higher education. Using an instrumental variables (IVs) strategy, which leverages changes in within-province between-municipality college proximity across birth cohorts, we demonstrate that higher education affects individual health-related behavior. By contrast, IVs estimates based on a compulsory schooling age reform show mostly non-significant effects. Our results point to a complex link between education and health. On the one hand, higher education channels individuals into some healthy behaviors and better health outcomes namely healthy eating, more physical activity and a lower risk of obesity. On the other hand, it also appears to increase the prevalence of certain unhealthy behaviors, such as greater smoking and drinking prevalence and higher cigarettes consumption. Albeit effects are generally similar across genders, except in few cases (e.g. smoking behavior), our analysis highlights heterogeneous effects by age and helps explain potential differences in results reported in past quasi-experimental studies in which the cohorts affected by the educational reforms used for identification are observed at given ages and not over an individual’s entire lifecycle

    Titan's temporal evolution in stratospheric trace gases near the poles

    Get PDF
    International audienceWe analyze spectra acquired by the Cassini/Composite Infrared Spectrometer (CIRS) at high resolution from October 2010 until September 2014 in nadir mode. Up until mid 2012, Titan’s Northern atmosphere exhibited the enriched chemical content found since the Voyager days (November 1980), with a peak around the Northern Spring Equinox (NSE) in 2009. Since then, we have observed the appearance at Titan’s south pole of several trace species for the first time, such as HC3N and C6H6, observed only at high northern latitudes before equinox. We investigate here latitudes poleward of 50°S and 50°N from 2010 (after the Southern Autumnal Equinox) until 2014. For some of the most abundant and longest-lived hydrocarbons (C2H2, C2H6 and C3H8) and CO2, the evolution in the past 4 years at a given latitude is not very significant within error bars especially until mid-2013. In more recent dates, these molecules show a trend for increase in the south. This trend is dramatically more pronounced for the other trace species, especially in 2013–2014, and at 70°S relative to 50°S. These two regions then demonstrate that they are subject to different dynamical processes in and out of the polar vortex region. For most species, we find higher abundances at 50°N compared to 50°S, with the exception of C3H8, CO2, C6H6 and HC3N, which arrive at similar mixing ratios after mid-2013. While the 70°N data show generally no change with a trend rather to a small decrease for most species within 2014, the 70°S results indicate a strong enhancement in trace stratospheric gases after 2012. The 663 cm−1 HC3N and the C6H6 674 cm−1 emission bands appeared in late 2011/early 2012 in the south polar regions and have since then exhibited a dramatic increase in their abundances. At 70°S HC3N, HCN and C6H6 have increased by 3 orders of magnitude over the past 3–4 years while other molecules, including C2H4, C3H4 and C4H2, have increased less sharply (by 1–2 orders of magnitude). This is a strong indication of the rapid and sudden buildup of the gaseous inventory in the southern stratosphere during 2013–2014, as expected as the pole moves deeper into winter shadow. Subsidence gases that accumulate in the absence of ultraviolet sunlight, evidently increased quickly since 2012 and some of them may be responsible also for the reported haze decrease in the north and its appearance in the south at the same time
    corecore