2,015 research outputs found
On piezophase effects in mechanically loaded atomic scale Josephson junctions
The response of an intrinsic Josephson contact to externally applied stress
is considered within the framework of the dislocation-induced atomic scale
Josephson effect. The predicted quasi-periodic (Fraunhofer-like)stress-strain
and stress-current patterns should manifest themselves for experimentally
accessible values of applied stresses in intrinsically defected (e.g.,twinned)
crystals.Comment: REVTEX (epsf style), 2 EPS figure
Four nearby L dwarfs
We present spectroscopic, photometric and astrometric observations of four
bright L dwarfs identified in the course of the 2MASS near-infrared survey. Our
spectroscopic data extend to wavelengths shortward of 5000\AA in the L0 dwarf
2MASSJ0746+2000 and the L4 dwarf 2MASSJ0036+1840, allowing the identification
of absorption bands due to MgH and CaOH. The atomic resonance lines Ca I
4227\AA and Na I 5890/5896\AA are extremely strong, with the latter having an
equivalent width of 240\AA in the L4 dwarf. By spectral type L5, the D lines
extend over \AA and absorb a substantial fraction of the flux emitted
in the V band, with a corresponding effect on the (V-I) broadband colour. The
KI resonance doublet at 7665/7699\AA increases in equivalent width from
spectral type M3 to M7, but decreases in strength from M7 to L0 before
broadening substantially at later types. These variations are likely driven by
dust formation in these cool atmospheres.Comment: to appear in AJ, January 2000; 27 pages, including 3 tables and 7
figures embedded in the tex
Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field
We study the local disorder in the deformation of amorphous materials by
decomposing the particle displacements into a continuous, inhomogeneous field
and the corresponding fluctuations. We compare these fields to the commonly
used non-affine displacements in an elastically deformed 2D Lennard-Jones
glass. Unlike the non-affine field, the fluctuations are very localized, and
exhibit a much smaller (and system size independent) correlation length, on the
order of a particle diameter, supporting the applicability of the notion of
local "defects" to such materials. We propose a scalar "noise" field to
characterize the fluctuations, as an additional field for extended continuum
models, e.g., to describe the localized irreversible events observed during
plastic deformation.Comment: Minor corrections to match the published versio
Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors
This paper addresses the variational multiscale stabilization of standard
finite element methods for linear partial differential equations that exhibit
multiscale features. The stabilization is of Petrov-Galerkin type with a
standard finite element trial space and a problem-dependent test space based on
pre-computed fine-scale correctors. The exponential decay of these correctors
and their localisation to local cell problems is rigorously justified. The
stabilization eliminates scale-dependent pre-asymptotic effects as they appear
for standard finite element discretizations of highly oscillatory problems,
e.g., the poor approximation in homogenization problems or the pollution
effect in high-frequency acoustic scattering
Piezomagnetism and Stress Induced Paramagnetic Meissner Effect in Mechanically Loaded High-T_c Granular Superconductors
Two novel phenomena in a weakly coupled granular superconductor under an
applied stress are predicted which are based on recently suggested piezophase
effect (a macroscopic quantum analog of the piezoelectric effect) in
mechanically loaded grain boundary Josephson junctions. Namely, we consider the
existence of stress induced paramagnetic moment in zero applied magnetic field
(piezomagnetism) and its influence on a low-field magnetization (leading to a
mechanically induced paramagnetic Meissner effect). The conditions under which
these two effects can be experimentally measured in high-T_$ granular
superconductors are discussed.Comment: 4 pages (REVTEX, epsf.sty), 2 PS figure
Big Entropy Fluctuations in Statistical Equilibrium: The Macroscopic Kinetics
Large entropy fluctuations in an equilibrium steady state of classical
mechanics were studied in extensive numerical experiments on a simple
2--freedom strongly chaotic Hamiltonian model described by the modified Arnold
cat map. The rise and fall of a large separated fluctuation was shown to be
described by the (regular and stable) "macroscopic" kinetics both fast
(ballistic) and slow (diffusive). We abandoned a vague problem of "appropriate"
initial conditions by observing (in a long run)spontaneous birth and death of
arbitrarily big fluctuations for any initial state of our dynamical model.
Statistics of the infinite chain of fluctuations, reminiscent to the Poincar\'e
recurrences, was shown to be Poissonian. A simple empirical relation for the
mean period between the fluctuations (Poincar\'e "cycle") has been found and
confirmed in numerical experiments. A new representation of the entropy via the
variance of only a few trajectories ("particles") is proposed which greatly
facilitates the computation, being at the same time fairly accurate for big
fluctuations. The relation of our results to a long standing debates over
statistical "irreversibility" and the "time arrow" is briefly discussed too.Comment: Latex 2.09, 26 pages, 6 figure
A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system
We present a tight-binding potential for transition metals, carbon, and
transition metal carbides, which has been optimized through a systematic
fitting procedure. A minimal basis, including the s, p electrons of carbon and
the d electrons of the transition metal, is used to obtain a transferable
tight-binding model of the carbon-carbon, metal-metal and metal-carbon
interactions applicable to binary systems. The Ni-C system is more specifically
discussed. The successful validation of the potential for different atomic
configurations indicates a good transferability of the model and makes it a
good choice for atomistic simulations sampling a large configuration space.
This approach appears to be very efficient to describe interactions in systems
containing carbon and transition metal elements
Survey for Transiting Extrasolar Planets in Stellar Systems. II. Spectrophotometry and Metallicities of Open Clusters
We present metallicity estimates for seven open clusters based on
spectrophotometric indices from moderate-resolution spectroscopy. Observations
of field giants of known metallicity provide a correlation between the
spectroscopic indices and the metallicity of open cluster giants. We use \chi^2
analysis to fit the relation of spectrophotometric indices to metallicity in
field giants. The resulting function allows an estimate of the target-cluster
giants' metallicities with an error in the method of \pm0.08 dex. We derive the
following metallicities for the seven open clusters: NGC 1245,
[m/H]=-0.14\pm0.04; NGC 2099, [m/H]=+0.05\pm0.05; NGC 2324, [m/H]=-0.06\pm0.04;
NGC 2539, [m/H]=-0.04\pm0.03; NGC 2682 (M67), [m/H]=-0.05\pm0.02; NGC 6705,
[m/H]=+0.14\pm0.08; NGC 6819, [m/H]=-0.07\pm0.12. These metallicity estimates
will be useful in planning future extra-solar planet transit searches since
planets may form more readily in metal-rich environments.Comment: 38 pages, including 12 figures. Accepted for publication in A
Updated stellar yields from Asymptotic Giant Branch models
An updated grid of stellar yields for low to intermediate-mass
thermally-pulsing Asymptotic Giant Branch (AGB) stars are presented. The models
cover a range in metallicity Z = 0.02, 0.008, 0.004, and 0.0001, and masses
between 1Msun to 6Msun. New intermediate-mass Z = 0.0001 AGB models are also
presented, along with a finer mass grid than used in previous studies. The
yields are computed using an updated reaction rate network that includes the
latest NeNa and MgAl proton capture rates, with the main result that between ~6
to 30 times less Na is produced by intermediate-mass models with hot bottom
burning. In low-mass AGB models we investigate the effect on the production of
light elements of including some partial mixing of protons into the intershell
region during the deepest extent of each third dredge-up episode. The protons
are captured by the abundant 12C to form a 13C pocket. The 13C pocket increases
the yields of 19F, 23Na, the neutron-rich Mg and Si isotopes, 60Fe, and 31P.
The increase in 31P is by factors of ~4 to 20, depending on the metallicity.
Any structural changes caused by the addition of the 13C pocket into the
He-intershell are ignored. However, the models considered are of low mass and
any such feedback is likely to be small. Further study is required to test the
accuracy of the yields from the partial-mixing models. For each mass and
metallicity, the yields are presented in a tabular form suitable for use in
galactic chemical evolution studies or for comparison to the composition of
planetary nebulae.Comment: Accepted for publication in MNRAS; 15 page
Autoantibodies against C1q as a diagnostic measure of lupus nephritis:systematic review and meta-analysis
This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Objectives: To evaluate the diagnostic accuracy of C1q autoantibodies in identifying lupus nephritis (LN) in patients with systemic lupus erythematosus (SLE). Data Sources and methods: Citation indexes were searched and 370 articles published from 1977 to 2013 were evaluated. The 31 selected studies included in the meta-analysis were cross-sectional in design. Among the 31 studies, 28 compared anti-C1q antibodies in 2769 SLE patients including those with (n = 1442) and without a history of LN (n = 1327). Nine studies examined anti-C1q in 517 SLE patients with active (n = 249) and inactive LN (n = 268). Hierarchical summary receiver operating characteristic (HSROC) random effects models were fitted to pool estimates of accuracy across the studies. Results: Anti-C1q antibodies discriminated between patients with and without a history of LN, with a median specificity of 73.5%. The HSROC model estimated the corresponding sensitivity to be 70.4%. A hypothetical patient with a 55% prior probability of having a history of LN as opposed to no history (the median prevalence across 28 eligible studies) would have a post-test probability of 76.4% following a positive test result (positive predictive value) or 33.0% following a negative test result (negative predictive value). For differentiating active from inactive LN the median specificity of anti-C1q antibodies was 80%, with a corresponding estimated sensitivity value 75.7% based on the HSROC model. A hypothetical patient with a 56% prior probability of active as opposed to inactive LN (the median prevalence across the 9 eligible studies) would have a post-test probability of 82.8% following a positive test result or 27.9% following a negative test result. Conclusions: Although C1q antibodies are associated with lupus nephritis the post-test probabilities are not sufficiently convincing to provide reasonable certainty of the presence or absence of history of disease/active disease.Arthritis Research UKPeninsula Collaboration for Leadership in Applied
Health Research and Care (CLAHRC)National Health Service
South West, funded by the National Institute for Health Research, U
- …
