2,125 research outputs found
A Functional Random Effects Model for Flexible Assessment of Susceptibility in Longitudinal Designs
BlackWatch:increasing attack awareness within web applications
Web applications are relied upon by many for the services they provide. It is essential that applications implement appropriate security measures to prevent security incidents. Currently, web applications focus resources towards the preventative side of security. Whilst prevention is an essential part of the security process, developers must also implement a level of attack awareness into their web applications. Being able to detect when an attack is occurring provides applications with the ability to execute responses against malicious users in an attempt to slow down or deter their attacks. This research seeks to improve web application security by identifying malicious behaviour from within the context of web applications using our tool BlackWatch. The tool is a Python-based application which analyses suspicious events occurring within client web applications, with the objective of identifying malicious patterns of behaviour. This approach avoids issues typically encountered with traditional web application firewalls. Based on the results from a preliminary study, BlackWatch was effective at detecting attacks from both authenticated, and unauthenticated users. Furthermore, user tests with developers indicated BlackWatch was user friendly, and was easy to integrate into existing applications. Future work seeks to develop the BlackWatch solution further for public release
Measurement error caused by spatial misalignment in environmental epidemiology
Copyright @ 2009 Gryparis et al - Published by Oxford University Press.In many environmental epidemiology studies, the locations and/or times of exposure measurements and health assessments do not match. In such settings, health effects analyses often use the predictions from an exposure model as a covariate in a regression model. Such exposure predictions contain some measurement error as the predicted values do not equal the true exposures. We provide a framework for spatial measurement error modeling, showing that smoothing induces a Berkson-type measurement error with nondiagonal error structure. From this viewpoint, we review the existing approaches to estimation in a linear regression health model, including direct use of the spatial predictions and exposure simulation, and explore some modified approaches, including Bayesian models and out-of-sample regression calibration, motivated by measurement error principles. We then extend this work to the generalized linear model framework for health outcomes. Based on analytical considerations and simulation results, we compare the performance of all these approaches under several spatial models for exposure. Our comparisons underscore several important points. First, exposure simulation can perform very poorly under certain realistic scenarios. Second, the relative performance of the different methods depends on the nature of the underlying exposure surface. Third, traditional measurement error concepts can help to explain the relative practical performance of the different methods. We apply the methods to data on the association between levels of particulate matter and birth weight in the greater Boston area.This research was supported by NIEHS grants ES012044 (AG, BAC), ES009825 (JS, BAC), ES007142 (CJP), and ES000002 (CJP), and EPA grant R-832416 (JS, BAC)
A taxonomy of approaches for integrating attack awareness in applications
Software applications are subject to an increasing number of attacks, resulting in data breaches and financial damage. Many solutions have been considered to help mitigate these attacks, such as the integration of attack-awareness techniques. In this paper, we propose a taxonomy illustrating how existing attack awareness techniques can be integrated into applications. This work provides a guide for security researchers and developers, aiding them when choosing the approach which best fits the needs of their application
- …
