174 research outputs found

    Marine bacterial, archaeal and protistan association networks reveal ecological linkages

    Get PDF
    Microbes have central roles in ocean food webs and global biogeochemical processes, yet specific ecological relationships among these taxa are largely unknown. This is in part due to the dilute, microscopic nature of the planktonic microbial community, which prevents direct observation of their interactions. Here, we use a holistic (that is, microbial system-wide) approach to investigate time-dependent variations among taxa from all three domains of life in a marine microbial community. We investigated the community composition of bacteria, archaea and protists through cultivation-independent methods, along with total bacterial and viral abundance, and physico-chemical observations. Samples and observations were collected monthly over 3 years at a well-described ocean time-series site of southern California. To find associations among these organisms, we calculated time-dependent rank correlations (that is, local similarity correlations) among relative abundances of bacteria, archaea, protists, total abundance of bacteria and viruses and physico-chemical parameters. We used a network generated from these statistical correlations to visualize and identify time-dependent associations among ecologically important taxa, for example, the SAR11 cluster, stramenopiles, alveolates, cyanobacteria and ammonia-oxidizing archaea. Negative correlations, perhaps suggesting competition or predation, were also common. The analysis revealed a progression of microbial communities through time, and also a group of unknown eukaryotes that were highly correlated with dinoflagellates, indicating possible symbioses or parasitism. Possible ‘keystone’ species were evident. The network has statistical features similar to previously described ecological networks, and in network parlance has non-random, small world properties (that is, highly interconnected nodes). This approach provides new insights into the natural history of microbes

    Occurrence of chlorophyll allomers during virus-induced mortality and population decline in the ubiquitous picoeukaryote Ostreococcus tauri

    Get PDF
    During viral infection and growth limitation of the picoeukaryote Ostreococcus tauri, we examined the relationship between membrane permeability, oxidative stress and chlorophyll allomers (oxidation products). Chlorophyll allomers were measured in batch-cultures of O. tauri in parallel with maximum quantum efficiency of photosystem II photochemistry (Fv/Fm), carotenoids, and reactive oxygen species and membrane permeability using fluorescent probes (CM-H2DCFDA and SYTOX-Green). Viral infection led to mass cell lysis of the O. tauri cells within 48 h. The concentration of the allomer hydroxychlorophyll a peaked with a 16-fold increase (relative to chlorophyll-a) just after the major lysis event. In contrast, cell death due to growth limitation resulted in a 2-fold increase in allomer production, relative to chl-a. Two allomers were detected solely in association with O. tauri debris after viral lysis, and unlike other allomers were not observed before viral lysis, or during cell death due to growth limitation. Conversely, the component chl-aP276 was found in the highest concentrations relative to chl-a, in exponentially growing O. tauri. The components described have potential as indicators of mode of phytoplankton mortality, and of population growth

    Oceanic loading of wildfire-derived organic compounds from a small mountainous river

    Get PDF
    Copyright 2008 by the American Geophysical Union.Small mountainous rivers (SMRs) export substantial amounts of sediment into the world's oceans. The concomitant yield of organic carbon (OC) associated with this class of rivers has also been shown to be significant and compositionally unique. We report here excessively high loadings of polycyclic aromatic hydrocarbons (PAHs), lignin, and levoglucosan, discharged from the Santa Clara River into the Santa Barbara Channel. The abundance of PAHs, levoglucosan, and lignin in Santa Barbara Channel sediments ranged from 201.7 to 1232.3 ng gdw−1, 1.3 to 6.9 μg gdw−1, and 0.3 to 2.2 mg per 100 mg of the sedimentary OC, respectively. Assuming a constant rate of sediment accumulation, the annual fluxes of PAHs, levoglucosan, and lignin, to the Santa Barbara Channel were respectively, 885.5 ± 170.2 ng cm−2 a−1, 3.5 ± 1.9 μg cm−2 a−1 and 1.4 ± 0.3 mg per 100 mg OC cm−2 a−1, over ∼30 years. The close agreement between PAHs, levoglucosan, and lignin abundance suggests that the depositional flux of these compounds is largely biomass combustion-derived. To that end, use of the Santa Clara River as a model for SMRs suggests this class of rivers may be one of the largest contributors of pyrolyzed carbon to coastal systems and the open ocean. Wildfire associated carbon discharged from other high yield fluvial systems, when considered collectively, may be a significant source of lignin, pyrolytic PAHs, and other pyrogenic compounds to the ocean. Extrapolating these methods over geologic time may offer useful historical information about carbon sequestration and burial in coastal sediments and affect coastal carbon budgets

    Defining DNA-based operational taxonomic units for microbial-eukaryote ecology

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 75 (2009): 5797-5808, doi:10.1128/AEM.00298-09.DNA sequence information has been increasingly used in ecological research on microbial eukaryotes. Sequence-based approaches have included studies of the total diversity of selected ecosystems, the autecology of ecologically relevant species, and the identification and enumeration of species of interest to human health. It is still uncommon, however, to delineate protistan species based on their genetic signatures. The reluctance to assign species-level designations based on DNA sequences is partly a consequence of the limited amount of sequence information presently available for many free-living microbial eukaryotes, and partly the problematic nature and debate surrounding the microbial species concept. Despite the difficulties inherent in assigning species names to DNA sequences, there is a growing need to attach meaning to the burgeoning amount of sequence information entering the literature, and a growing desire to apply this information in ecological studies. We describe a computer-based tool that assigns DNA sequences from environmental databases to operational taxonomic units at approximate species-level distinctions. The approach provides a practical method for ecological studies of microbial eukaryotes (primarily protists) by enabling semiautomated analysis of large numbers of samples spanning great taxonomic breadth. Derivation of the algorithm was based on an analysis of complete small subunit ribosomal RNA (18S) gene sequences and partial gene sequences obtained from GenBank for morphologically described protistan species. The program was tested using environmental 18S data sets from two oceanic ecosystems. A total of 388 operational taxonomic units were observed among 2,207 sequences obtained from samples collected in the western North Atlantic and eastern North Pacific.Support for this manuscript was provided by National Science Foundation grants MCB-0732066, MCB-0703159 and OCE-0550829 and a grant from the Gordon and Betty Moore Foundation

    Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters

    Get PDF
    Prochlorococcus and Synechococcus are the two most abundant marine cyanobacteria. They represent a significant fraction of the total primary production of the world oceans and comprise a major fraction of the prey biomass available to phagotrophic protists. Despite relatively rapid growth rates, picocyanobacterial cell densities in open-ocean surface waters remain fairly constant, implying steady mortality due to viral infection and consumption by predators. There have been several studies on grazing by specific protists on Prochlorococcus and Synechococcus in culture, and of cell loss rates due to overall grazing in the field. However, the specific sources of mortality of these primary producers in the wild remain unknown. Here, we use a modification of the RNA stable isotope probing technique (RNA-SIP), which involves adding labelled cells to natural seawater, to identify active predators that are specifically consuming Prochlorococcus and Synechococcus in the surface waters of the Pacific Ocean. Four major groups were identified as having their 18S rRNA highly labelled: Prymnesiophyceae (Haptophyta), Dictyochophyceae (Stramenopiles), Bolidomonas (Stramenopiles) and Dinoflagellata (Alveolata). For the first three of these, the closest relative of the sequences identified was a photosynthetic organism, indicating the presence of mixotrophs among picocyanobacterial predators. We conclude that the use of RNA-SIP is a useful method to identity specific predators for picocyanobacteria in situ, and that the method could possibly be used to identify other bacterial predators important in the microbial food-web

    Processes That Contribute to Decreased Dimethyl Sulfide Production in Response to Ocean Acidification in Subtropical Waters

    Get PDF
    Long-term time series data show that ocean acidification is occurring in the subtropical oceans. As a component of an in situ mesocosm experiment carried out offGran Canaria in the subtropical North Atlantic, we examined the influence of ocean acidification on the net production of dimethylsulfide (DMS). Over 23 days under oligotrophic conditions, time-integrated DMS concentrations showed an inverse relationship of -0.21 ± 0.02 nmol DMS nmol-1 H+ across the gradient of H+ concentration of 8.8-23.3 nmol l-1, equivalent to a range of pCO2 of 400-1,252 atm. Proportionally similar decreases in the concentrations of both dissolved and particulate dimethylsulfoniopropionate (DMSP) were observed in relation to increasing H+ concentration between the mesocosms. The reduced net production of DMSP with increased acidity appeared to result from a decrease in abundance of a DMSP-rich nanophytoplankton population. A 35S-DMSP tracer approach was used to determine rates of dissolved DMSP catabolism, including DMS production, across the mesocosm treatments. Over a phase of increasing DMS concentrations during the experiment, the specific rates of DMS production were significantly reduced at elevated H+ concentration. These rates were closely correlated to the rates of net DMS production indicating that transformation of dissolved DMSP to DMS by bacteria was a major component of DMS production. It was not possible to resolve whether catabolism of DMSP was directly influenced by H+ concentrations or was an indirect response in the bacterial community composition associated with reduced DMSP availability. There is a pressing need to understand how subtropical planktonic communities respond to the predicted gradual prolonged ocean acidification, as alterations in the emission of DMS from the vast subtropical oceans could influence atmospheric chemistry and potentially climate, over a large proportion of the Earth's surface
    corecore