154 research outputs found
Moving towards grapevine genotypes better adapted to abiotic constraints
Vitis spp., both in their cultivated and wild forms, have been growing in a large diversity of environments for thousands of years. As a result, they have developed many adaptive mechanisms controlled by a range of regulatory processes. The cultivated species, Vitis vinifera, is quite well adapted to semi-arid conditions and its cultivation can be used to produce crops on marginal lands. However, this is threatened by climate change, which is associated with increased temperature and CO2 atmospheric content, changes in water availability and an increased likelihood of extreme events, such as heat waves and early spring frosts. Indirect effects of climate change on solar radiation and soil minerals are also expected. Consequently, cultivated grapevines will presumably face more abiotic constraints occurring concomitantly or successively over one or more growing cycles. In addition to climate change, worldwide viticulture must reduce the use of pesticides. Adapting to climate change and reducing pesticide use are challenging, and increase the need to create new grapevine varieties that are more resistant to diseases and better adapted to abiotic constraints. For this purpose, the adaptive mechanisms of wild and cultivated Vitis spp. must be exploited. While major advances have already been made in exploiting wild alleles for disease resistance, the polygenic nature of adaptation to abiotic factors has slowed down research progress. To tackle this limitation, ambitious integrative strategies need to be undertaken from collection and characterization of genetic resources, investigations on genetic architecture and identification of underlying genes (including those involved in epigenetic regulation), to the implementation of new breeding technologies and the development of genomic selection. An update on the state-of-the-art regarding these aspects is presented
Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes
Despite previous reports on the genotypic variation of architectural and functional traits in fruit trees, phenotyping large populations in the field remains challenging. In this study, we used high-throughput phenotyping methods on an apple tree core-collection (1000 individuals) grown under contrasted watering regimes. First, architectural phenotyping was achieved using T-LiDAR scans for estimating convex and alpha hull volumes and the silhouette to total leaf area ratio (STAR). Second, a semi-empirical index (IPL) was computed from chlorophyll fluorescence measurements, as a proxy for leaf photosynthesis. Last, thermal infrared and multispectral airborne imaging was used for computing canopy temperature variations, water deficit, and vegetation indices. All traits estimated by these methods were compared to low-throughput in planta measurements. Vegetation indices and alpha hull volumes were significantly correlated with tree leaf area and trunk cross sectional area, while IPL values showed strong correlations with photosynthesis measurements collected on an independent leaf dataset. By contrast, correlations between stomatal conductance and canopy temperature estimated from airborne images were lower, emphasizing discrepancies across measurement scales. High heritability values were obtained for almost all the traits except leaf photosynthesis, likely due to large intra-tree variation. Genotypic means were used in a clustering procedure that defined six classes of architectural and functional combinations. Differences between groups showed several combinations between architectural and functional traits, suggesting independent genetic controls. This study demonstrates the feasibility and relevance of combining multi-scale high-throughput methods and paves the way to explore the genetic bases of architectural and functional variations in woody crops in field conditions
Countering elevated CO2 induced Fe and Zn reduction in Arabidopsis seeds
Growth at increased concentrations of CO2 induces a reduction in seed zinc (Zn) and iron (Fe). Using Arabidopsis thaliana, we investigated whether this could be mitigated by reducing the elevated CO2-induced decrease in transpiration.
We used an infrared imaging-based screen to isolate mutants in At1g08080 that encodes ALPHA CARBONIC ANHYDRASE 7 (ACA7). aca7 mutant alleles display wild-type (WT) responses to abscisic acid (ABA) and light but are compromised in their response to elevated CO2. ACA7 is expressed in guard cells. When aca7 mutants are grown at 1000 ppm CO2 they exhibit higher transpiration and higher seed Fe and Zn content than WT grown under the same conditions. Our data show that by increasing transpiration it is possible to partially mitigate the reduction in seed Fe and Zn content when Arabidopsis is grown at elevated CO2
NIRS as a high-throughput phenotyping tool for assessing the diversity of leaf functioning under water deficit in a large grapevine panel
Water resource is a major limiting factor impacted by climate change, threatening the yield and quality of grapevine production. Understanding the ecophysiological mechanisms involved in response to water deficit is crucial to select new varieties more drought-tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring functioning traits on thousands of leaves as required for genetic analyses. Recent studies have highlighted the interest of near-infrared spectroscopy (NIRS) and chlorophyll fluorescence for high-throughput evaluation of leaf functioning traits. The aim of this study is to develop these methods, and test their robustness to facilitate their deployment for phenotyping the genetic diversity of grapevine. 246 genotypes, representative of the genetic diversity of the species Vitis vinifera, were phenotyped over two consecutive years. In 2021, the genotypes were grown in pots outdoors under non-limiting irrigation conditions, while in 2022, the same potted genotypes were subjected to three different water scenarios (i. Well-watered, ii. Moderate water deficit, iii. Severe water deficit) in a greenhouse (PhenoArch high-throughput phenotyping platform). To evaluate traits related to carbon and water functioning across the entire panel, a subset of genotypes were phenotyped by combining i/ low-throughput devices to precisely measure ecophysiological traits, and ii/ innovative high-throughput portable devices to measure NIRS, porometry and chlorophyll fluorescence. These data enabled the creation of partial least squares regression (PLSR) models using both low- and high-throughput data to predict ecophysiological traits. Leaf mass per area and leaf water content were well predicted by spectrometers (R² > 0.7). Photosynthesis, on the other hand, was well predicted by chlorophyll fluorescence and porometry data. The robustness of the predictive models was tested between experiments by comparing models calibrated with data from one experiment to predict data from the second one. The robustness of the models was dependent on the trait and the high-throughput device used. The prediction of leaf mass per area, using NIRS, appeared to be accurate and stable between experiments. Intra-experiment robustness analysis showed that water deficit can impact the quality of trait predictions, particularly those related to water, such as water content and water use efficiency. The R² and RMSE parameters provided additional information, especially as water deficit affected trait variability. The prediction of these traits was less accurate when applied on a plant that had been grown under severe water deficit. Compelling models will be employed to predict these traits across the entire panel, enabling their use in genetic analysis
Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies
International audienceMulti-genotype canopies are frequent in phenotyping experiments and are of increasing interest in agriculture. Radiation interception efficiency (RIE) and radiation use efficiency (RUE) have low heritabilities in such canopies. We propose a revised Monteith equation that identifies environmental and genetic components of RIE and RUE. An environmental term, a component of RIE, characterizes the effect of the presence or absence of neighbours on light interception. The ability of a given plant to compete with its neighbours is then identified, which accounts for the genetic variability of RIE of plants having similar leaf areas. This method was used in three experiments in a phenotyping platform with 765 plants of 255 maize hybrids. As expected, the heritability of the environmental term was near zero, whereas that of the competitiveness term increased with phenological stage, resulting in the identification of quantitative trait loci. In the same way, RUE was dissected as an effect of intercepted light and a genetic term. This approach was used for predicting the behaviour of individual genotypes in virtual multi-genotype canopies. A large effect of competitiveness was observed in multi-genotype but not in single-genotype canopies, resulting in a bias for genotype comparisons in breeding fields
Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies
UMR-AGAP Equipe DAVV (Diversité, adaptation et amélioration de la vigne) ; équipe ID (Intégration de Données)International audienceAbstractBackgroundAs for many crops, new high-quality grapevine varieties requiring less pesticide and adapted to climate change are needed. In perennial species, breeding is a long process which can be speeded up by gaining knowledge about quantitative trait loci linked to agronomic traits variation. However, due to the long juvenile period of these species, establishing numerous highly recombinant populations for high resolution mapping is both costly and time-consuming. Genome wide association studies in germplasm panels is an alternative method of choice, since it allows identifying the main quantitative trait loci with high resolution by exploiting past recombination events between cultivars. Such studies require adequate panel design to represent most of the available genetic and phenotypic diversity. Assessing linkage disequilibrium extent and panel power is also needed to determine the marker density required for association studies.ResultsStarting from the largest grapevine collection worldwide maintained in Vassal (France), we designed a diversity panel of 279 cultivars with limited relatedness, reflecting the low structuration in three genetic pools resulting from different uses (table vs wine) and geographical origin (East vs West), and including the major founders of modern cultivars. With 20 simple sequence repeat markers and five quantitative traits, we showed that our panel adequately captured most of the genetic and phenotypic diversity existing within the entire Vassal collection. To assess linkage disequilibrium extent and panel power, we genotyped single nucleotide polymorphisms: 372 over four genomic regions and 129 distributed over the whole genome. Linkage disequilibrium, measured by correlation corrected for kinship, reached 0.2 for a physical distance between 9 and 458 Kb depending on genetic pool and genomic region, with varying size of linkage disequilibrium blocks. This panel achieved reasonable power to detect associations between traits with high broad-sense heritability (> 0.7) and causal loci with intermediate allelic frequency and strong effect (explaining > 10 % of total variance).ConclusionsOur association panel constitutes a new, highly valuable resource for genetic association studies in grapevine, and deserves dissemination to diverse field and greenhouse trials to gain more insight into the genetic control of many agronomic traits and their interaction with the environment
Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip
UMR AGAP - équipe DAAV - Diversité, adaptation et amélioration de la vigne[b]Background[/b] [br/]The increasing temperature associated with climate change impacts grapevine phenology and development with critical effects on grape yield and composition. Plant breeding has the potential to deliver new cultivars with stable yield and quality under warmer climate conditions, but this requires the identification of stable genetic determinants. This study tested the potentialities of the microvine to boost genetics in grapevine. A mapping population of 129 microvines derived from Picovine x Ugni Blanc flb, was genotyped with the Illumina® 18 K SNP (Single Nucleotide Polymorphism) chip. Forty-three vegetative and reproductive traits were phenotyped outdoors over four cropping cycles, and a subset of 22 traits over two cropping cycles in growth rooms with two contrasted temperatures, in order to map stable QTLs (Quantitative Trait Loci). [br/][b]Results[/b] [br/]Ten stable QTLs for berry development and quality or leaf area were identified on the parental maps. A new major QTL explaining up to 44 % of total variance of berry weight was identified on chromosome 7 in Ugni Blanc flb, and co-localized with QTLs for seed number (up to 76 % total variance), major berry acids at green lag phase (up to 35 %), and other yield components (up to 25 %). In addition, a minor QTL for leaf area was found on chromosome 4 of the same parent. In contrast, only minor QTLs for berry acidity and leaf area could be found as moderately stable in Picovine. None of the transporters recently identified as mutated in low acidity apples or Cucurbits were included in the several hundreds of candidate genes underlying the above berry QTLs, which could be reduced to a few dozen candidate genes when a priori pertinent biological functions and organ specific expression were considered. [br/][b]Conclusions[/b] [br/]This study combining the use of microvine and a high throughput genotyping technology was innovative for grapevine genetics. It allowed the identification of 10 stable QTLs, including the first berry acidity QTLs reported so far in a Vitis vinifera intra-specific cross. Robustness of a set of QTLs was assessed with respect to temperature variatio
Actin filament reorganisation controlled by the SCAR/WAVE complex mediates stomatal response to darkness.
This is the final version of the article. Available from the publisher via the DOI in this record.Stomata respond to darkness by closing to prevent excessive water loss during the night. Although the reorganisation of actin filaments during stomatal closure is documented, the underlying mechanisms responsible for dark-induced cytoskeletal arrangement remain largely unknown. We used genetic, physiological and cell biological approaches to show that reorganisation of the actin cytoskeleton is required for dark-induced stomatal closure. The opal5 mutant does not close in response to darkness but exhibits wild-type (WT) behaviour when exposed to abscisic acid (ABA) or CaCl2 . The mutation was mapped to At5g18410, encoding the PIR/SRA1/KLK subunit of the ArabidopsisSCAR/WAVE complex. Stomata of an independent allele of the PIR gene (Atpir-1) showed reduced sensitivity to darkness and F1 progenies of the cross between opal5 and Atpir-1 displayed distorted leaf trichomes, suggesting that the two mutants are allelic. Darkness induced changes in the extent of actin filament bundling in WT. These were abolished in opal5. Disruption of filamentous actin using latrunculin B or cytochalasin D restored wild-type stomatal sensitivity to darkness in opal5. Our findings suggest that the stomatal response to darkness is mediated by reorganisation of guard cell actin filaments, a process that is finely tuned by the conserved SCAR/WAVE-Arp2/3 actin regulatory module.This
work was supported by grants from the BBSRC (BB/
N001168/1; BB/J002364/1; BBF001177/1), The Gatsby Charitable
Foundation and the Leverhulme Trust to A.M.H. and
grants from the National Natural Science Foundation of China
(nos. 31300213 and 31670408 to K.J.). This work was also
supported by the Centre National de la Recherche Scientifique
and the Commissariat a l’Energie Atomique et aux Energies
Alternatives (for the IR camera) and the European Union
Marie Curie FP5 Research Training Network (program no.
STRESSIMAGING HNRT-CT-2002-00254 to J.M.C. and
B.G.). J.M.C. was in addition supported by a scholarship of
the Fundac ~ao para a Ci^encia e Tecnologia, Portugal (grant no.
SFRH/BPD/34429/2006)
- …
