3,878 research outputs found

    Fly-automata for checking MSO 2 graph properties

    Full text link
    A more descriptive but too long title would be : Constructing fly-automata to check properties of graphs of bounded tree-width expressed by monadic second-order formulas written with edge quantifications. Such properties are called MSO2 in short. Fly-automata (FA) run bottom-up on terms denoting graphs and compute "on the fly" the necessary states and transitions instead of looking into huge, actually unimplementable tables. In previous works, we have constructed FA that process terms denoting graphs of bounded clique-width, in order to check their monadic second-order (MSO) properties (expressed by formulas without edge quan-tifications). Here, we adapt these FA to incidence graphs, so that they can check MSO2 properties of graphs of bounded tree-width. This is possible because: (1) an MSO2 property of a graph is nothing but an MSO property of its incidence graph and (2) the clique-width of the incidence graph of a graph is linearly bounded in terms of its tree-width. Our constructions are actually implementable and usable. We detail concrete constructions of automata in this perspective.Comment: Submitted for publication in December 201

    Rank-width of Random Graphs

    Get PDF
    Rank-width of a graph G, denoted by rw(G), is a width parameter of graphs introduced by Oum and Seymour (2006). We investigate the asymptotic behavior of rank-width of a random graph G(n,p). We show that, asymptotically almost surely, (i) if 0<p<1 is a constant, then rw(G(n,p)) = \lceil n/3 \rceil-O(1), (ii) if 1/n<< p <1/2, then rw(G(n,p))= \lceil n/3\rceil-o(n), (iii) if p = c/n and c > 1, then rw(G(n,p)) > r n for some r = r(c), and (iv) if p <= c/n and c<1, then rw(G(n,p)) <=2. As a corollary, we deduce that G(n,p) has linear tree-width whenever p=c/n for each c>1, answering a question of Gao (2006).Comment: 10 page

    Computations by fly-automata beyond monadic second-order logic

    Full text link
    We present logically based methods for constructing XP and FPT graph algorithms, parametrized by tree-width or clique-width. We will use fly-automata introduced in a previous article. They make possible to check properties that are not monadic second-order expressible because their states may include counters, so that their sets of states may be infinite. We equip these automata with output functions, so that they can compute values associated with terms or graphs. Rather than new algorithmic results we present tools for constructing easily certain dynamic programming algorithms by combining predefined automata for basic functions and properties.Comment: Accepted for publication in Theoretical Computer Scienc

    Monadic second-order definable graph orderings

    Full text link
    We study the question of whether, for a given class of finite graphs, one can define, for each graph of the class, a linear ordering in monadic second-order logic, possibly with the help of monadic parameters. We consider two variants of monadic second-order logic: one where we can only quantify over sets of vertices and one where we can also quantify over sets of edges. For several special cases, we present combinatorial characterisations of when such a linear ordering is definable. In some cases, for instance for graph classes that omit a fixed graph as a minor, the presented conditions are necessary and sufficient; in other cases, they are only necessary. Other graph classes we consider include complete bipartite graphs, split graphs, chordal graphs, and cographs. We prove that orderability is decidable for the so called HR-equational classes of graphs, which are described by equation systems and generalize the context-free languages

    On the Monadic Second-Order Transduction Hierarchy

    Full text link
    We compare classes of finite relational structures via monadic second-order transductions. More precisely, we study the preorder where we set C \subseteq K if, and only if, there exists a transduction {\tau} such that C\subseteq{\tau}(K). If we only consider classes of incidence structures we can completely describe the resulting hierarchy. It is linear of order type {\omega}+3. Each level can be characterised in terms of a suitable variant of tree-width. Canonical representatives of the various levels are: the class of all trees of height n, for each n \in N, of all paths, of all trees, and of all grids

    Regular Combinators for String Transformations

    Full text link
    We focus on (partial) functions that map input strings to a monoid such as the set of integers with addition and the set of output strings with concatenation. The notion of regularity for such functions has been defined using two-way finite-state transducers, (one-way) cost register automata, and MSO-definable graph transformations. In this paper, we give an algebraic and machine-independent characterization of this class analogous to the definition of regular languages by regular expressions. When the monoid is commutative, we prove that every regular function can be constructed from constant functions using the combinators of choice, split sum, and iterated sum, that are analogs of union, concatenation, and Kleene-*, respectively, but enforce unique (or unambiguous) parsing. Our main result is for the general case of non-commutative monoids, which is of particular interest for capturing regular string-to-string transformations for document processing. We prove that the following additional combinators suffice for constructing all regular functions: (1) the left-additive versions of split sum and iterated sum, which allow transformations such as string reversal; (2) sum of functions, which allows transformations such as copying of strings; and (3) function composition, or alternatively, a new concept of chained sum, which allows output values from adjacent blocks to mix.Comment: This is the full version, with omitted proofs and constructions, of the conference paper currently in submissio

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs

    IO vs OI in Higher-Order Recursion Schemes

    Get PDF
    We propose a study of the modes of derivation of higher-order recursion schemes, proving that value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those obtained using unrestricted derivations. Given that higher-order recursion schemes can be used as a model of functional programs, innermost-outermost derivations policy represents a theoretical view point of call by value evaluation strategy.Comment: In Proceedings FICS 2012, arXiv:1202.317

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page
    corecore