3,060 research outputs found
Is the superior verbal memory span of Mandarin speakers due to faster rehearsal?
It is well established that digit span in native Chinese speakers is atypically high. This is commonly attributed to a capacity for more rapid subvocal rehearsal for that group. We explored this hypothesis by testing a group of English-speaking native Mandarin speakers on digit span and word span in both Mandarin and English, together with a measure of speed of articulation for each. When compared to the performance of native English speakers, the Mandarin group proved to be superior on both digit and word spans while predictably having lower spans in English. This suggests that the Mandarin advantage is not limited to digits. Speed of rehearsal correlated with span performance across materials. However, this correlation was more pronounced for English speakers than for any of the Chinese measures. Further analysis suggested that speed of rehearsal did not provide an adequate account of differences between Mandarin and English spans or for the advantage of digits over words. Possible alternative explanations are discussed
Recommended from our members
Something from (almost) nothing: Buildup of object memory from forgettable single fixations
We can recognize thousands of individual objects in scores of familiar settings, and yet we see most of them only through occasional glances that are quickly forgotten. How do we come to recognize any of these objects? Here, we show that when objects are presented intermittently for durations of single fixations, the originally fleeting memories become gradually stabilized, such that, after just eight separated fixations, recognition memory after half an hour is as good as during an immediate memory test. However, with still shorter presentation durations, memories take more exposures to stabilize. Our results thus suggest that repeated glances suffice to remember the objects of our environment
A Geographically-Restricted but Prevalent Mycobacterium tuberculosis Strain Identified in the West Midlands Region of the UK between 1995 and 2008
Background: We describe the identification of, and risk factors for, the single most prevalent Mycobacterium tuberculosis strain in the West Midlands region of the UK.Methodology/Principal Findings: Prospective 15-locus MIRU-VNTR genotyping of all M. tuberculosis isolates in the West Midlands between 2004 and 2008 was undertaken. Two retrospective epidemiological investigations were also undertaken using univariable and multivariable logistic regression analysis. The first study of all TB patients in the West Midlands between 2004 and 2008 identified a single prevalent strain in each of the study years (total 155/3,056 (5%) isolates). This prevalent MIRU-VNTR profile (32333 2432515314 434443183) remained clustered after typing with an additional 9-loci MIRU-VNTR and spoligotyping. The majority of these patients (122/155, 79%) resided in three major cities located within a 40 km radius. From the apparent geographical restriction, we have named this the "Mercian" strain. A multivariate analysis of all TB patients in the West Midlands identified that infection with a Mercian strain was significantly associated with being UK-born (OR = 9.03, 95% CI = 4.56-17.87, p 65 years old (OR = 0.25, 95% CI = 0.09-0.67, p < 0.01). A second more detailed investigation analyzed a cohort of 82 patients resident in Wolverhampton between 2003 and 2006. A significant association with being born in the UK remained after a multivariate analysis (OR = 9.68, 95% CI = 2.00-46.78, p < 0.01) and excess alcohol intake and cannabis use (OR = 6.26, 95% CI = 1.45-27.02, p = .01) were observed as social risk factors for infection.Conclusions/Significance: The continued consistent presence of the Mercian strain suggests ongoing community transmission. Whilst significant associations have been found, there may be other common risk factors yet to be identified. Future investigations should focus on targeting the relevant risk groups and elucidating the biological factors that mediate continued transmission of this strain
Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
Interprofessional communication with hospitalist and consultant physicians in general internal medicine : a qualitative study
This study helps to improve our understanding of the collaborative environment in GIM, comparing the communication styles and strategies of hospitalist and consultant physicians, as well as the experiences of providers working with them. The implications of this research are globally important for understanding how to create opportunities for physicians and their colleagues to meaningfully and consistently participate in interprofessional communication which has been shown to improve patient, provider, and organizational outcomes
Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study
Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178
Investigating Executive Working Memory and Phonological Short-Term Memory in Relation to Fluency and Self-Repair Behavior in L2 Speech
This paper reports the findings of a study investigating the relationship of executive working memory (WM) and phonological short-term memory (PSTM) to fluency and self-repair behavior during an unrehearsed oral task performed by second language (L2) speakers of English at two levels of proficiency, elementary and lower intermediate. Correlational analyses revealed a negative relationship between executive WM and number of pauses in the lower intermediate L2 speakers. However, no reliable association was found in our sample between executive WM or PSTM and self-repair behavior in terms of either frequency or type of self-repair. Taken together, our findings suggest that while executive WM may enhance performance at the conceptualization and formulation stages of the speech production process, self-repair behavior in L2 speakers may depend on factors other than working memory
Recommended from our members
Order recall in verbal short-term memory: The role of semantic networks
In their recent article, Acheson, MacDonald, and Postle (Journal of Experimental Psychology: Learning, Memory, and Cognition 37:44-59, 2011) made an important but controversial suggestion: They hypothesized that (a) semantic information has an effect on order information in short-term memory (STM) and (b) order recall in STM is based on the level of activation of items within the relevant lexico-semantic long-term memory (LTM) network. However, verbal STM research has typically led to the conclusion that factors such as semantic category have a large effect on the number of correctly recalled items, but little or no impact on order recall (Poirier & Saint-Aubin, Quarterly Journal of Experimental Psychology 48A:384-404, 1995; Saint-Aubin, Ouellette, & Poirier, Psychonomic Bulletin & Review 12:171-177, 2005; Tse, Memory 17:874-891, 2009). Moreover, most formal models of short-term order memory currently suggest a separate mechanism for order coding-that is, one that is separate from item representation and not associated with LTM lexico-semantic networks. Both of the experiments reported here tested the predictions that we derived from Acheson et al. The findings show that, as predicted, manipulations aiming to affect the activation of item representations significantly impacted order memory
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
