471 research outputs found
Exploring haemodynamics of haemodialysis using extrema points analysis model
Background: Haemodialysis is a form of renal replacement therapy used to treat
patients with end stage renal failure. It is becoming more appreciated that
haemodialysis patients exhibit higher rates of multiple end organ damage
compared to the general population. There is also a strong emerging evidence that
haemodialysis itself causes circulatory stress. We aimed at examining
haemodynamic patterns during haemodialysis using a new model and test that
model against a normal control.
Methods: We hypothesised that blood pressures generated by each heart beat
constantly vary between local peaks and troughs (local extrema), the frequency and
amplitude of which is regulated to maintain optimal organ perfusion. We also
hypothesised that such model could reveal multiple haemodynamic aberrations
during HD. Using a non-invasive cardiac output monitoring device (Finometer®) we
compared various haemodynamic parameters using the above model between a
haemodialysis patient during a dialysis session and an exercised normal control after
comparison at rest.
Results: Measurements yielded 29,751 data points for each haemodynamic
parameter. Extrema points frequency of mean arterial blood pressure was higher in
the HD subject compared to the normal control (0.761Hz IQR 0.5-0.818 vs 0.468Hz
IQR 0.223-0.872, P < 0.0001). Similarly, extrema points frequency of systolic blood
pressure was significantly higher in haemodialysis compared to normal. In contrary,
the frequency of extrema points for TPR was higher in the normal control compared
to HD (0.947 IQR 0.520-1.512 vs 0.845 IQR 0.730-1.569, P < 0.0001) with significantly
higher amplitudes.
Conclusion: Haemodialysis patients potentially exhibit an aberrant haemodynamic
behaviour characterised by higher extrema frequencies of mean arterial blood
pressure and lower extrema frequencies of total peripheral resistance. This, in
theory, could lead to higher variation in organ perfusion and may be detrimental to vulnerable vascular beds
Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (TH1, TH2) to immune-mediated tumour cell death induced by NAC
Background
The tumour microenvironment consists of malignant cells, stroma and immune cells. In women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC), tumour-infiltrating lymphocytes (TILs), various subsets (effector, regulatory) and cytokines in the primary tumour play a key role in the induction of tumour cell death and a pathological complete response (pCR) with NAC. Their contribution to a pCR in nodal metastases, however, is poorly studied and was investigated.
Methods
Axillary lymph nodes (ALNs) (24 with and 9 without metastases) from women with LLABCs undergoing NAC were immunohistochemically assessed for TILs, T effector and regulatory cell subsets, NK cells and cytokine expression using labelled antibodies, employing established semi-quantitative methods. IBM SPSS statistical package (21v) was used. Non-parametric (paired and unpaired) statistical analyses were performed. Univariate and multivariate regression analyses were carried out to establish the prediction of a pCR and Spearman’s Correlation Coefficient was used to determine the correlation of immune cell infiltrates in ALN metastatic and primary breast tumours.
Results
In ALN metastases high levels of TILs, CD4+ and CD8+ T and CD56+ NK cells were significantly associated with pCRs.. Significantly higher levels of Tregs (FOXP3+, CTLA-4+) and CD56+ NK cells were documented in ALN metastases than in the corresponding primary breast tumours. CD8+ T and CD56+ NK cells showed a positive correlation between metastatic and primary tumours. A high % CD8+ and low % FOXP3+ T cells and high CD8+: FOXP3+ ratio in metastatic ALNs (tumour-free para-cortex) were associated with pCRs. Metastatic ALNs expressed high IL-10, low IL-2 and IFN-ϒ.
Conclusions
Our study has provided new data characterising the possible contribution of T effector and regulatory cells and NK cells and T helper1 and 2 cytokines to tumour cell death associated with NAC in ALNs
Nutrient supply affects the mRNA expression profile of the porcine skeletal muscle
Background: The genetic basis of muscle fat deposition in pigs is not well known. So far, we have only identified a limited number of genes involved in the absorption, transport, storage and catabolism of lipids. Such information is crucial to interpret, from a biological perspective, the results of genome-wide association analyses for intramuscular fat content and composition traits. Herewith, we have investigated how the ingestion of food changes gene expression in the gluteus medius muscle of Duroc pigs. Results: By comparing the muscle mRNA expression of fasted pigs (T0) with that of pigs sampled 5 h (T1) and 7 h (T2) after food intake, we have detected differential expression (DE) for 148 (T0-T1), 520 (T0-T2) and 135 (T1-T2) genes (q-value of 1.5). Many of these DE genes were transcription factors, suggesting that we have detected the coordinated response of the skeletal muscle to nutrient supply. We also found DE genes with a dual role in oxidative stress and angiogenesis (THBS1, THBS2 and TXNIP), two biological processes that are probably activated in the post-prandial state. Finally, we have identified several loci playing a key role in the modulation of circadian rhythms (ARNTL, PER1, PER2, BHLHE40, NR1D1, SIK1, CIART and CRY2), a result that indicates that the porcine muscle circadian clock is modulated by nutrition. Conclusion: We have shown that hundreds of genes change their expression in the porcine skeletal muscle in response to nutrient intake. Many of these loci do not have a known metabolic role, a result that suggests that our knowledge about the genetic basis of muscle energy homeostasis is still incomplete
Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats.
Reduced glomerular filtration, hypertension and renal microvascular injury are hallmarks of chronic kidney disease, which has a global prevalence of ~10%. We have shown previously that the Fischer (F344) rat has lower GFR than the Lewis rat, and is more susceptible to renal injury induced by hypertension. In the early stages this injury is limited to the pre-glomerular vasculature. We hypothesized that poor renal hemodynamic function and vulnerability to vascular injury are causally linked and genetically determined. In the present study, normotensive F344 rats had a blunted pressure diuresis relationship, compared with Lewis rats. A kidney microarray was then interrogated using the Endeavour enrichment tool to rank candidate genes for impaired blood pressure control. Two novel candidate genes, P2rx7 and P2rx4, were identified, having a 7- and 3- fold increased expression in F344 rats. Immunohistochemistry localized P2X4 and P2X7 receptor expression to the endothelium of the pre-glomerular vasculature. Expression of both receptors was also found in the renal tubule; however there was no difference in expression profile between strains. Brilliant Blue G (BBG), a relatively selective P2X7 antagonist suitable for use in vivo, was administered to both rat strains. In Lewis rats, BBG had no effect on blood pressure, but increased renal vascular resistance, consistent with inhibition of some basal vasodilatory tone. In F344 rats BBG caused a significant reduction in blood pressure and a decrease in renal vascular resistance, suggesting that P2X7 receptor activation may enhance vasoconstrictor tone in this rat strain. BBG also reduced the pressure diuresis threshold in F344 rats, but did not alter its slope. These preliminary findings suggest a physiological and potential pathophysiological role for P2X7 in controlling renal and/or systemic vascular function, which could in turn affect susceptibility to hypertension-related kidney damage
Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases
Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
Mitochondrial polymorphisms in rat genetic models of hypertension
Hypertension is a complex trait that has been studied extensively for genetic contributions of the nuclear genome. We examined mitochondrial genomes of the hypertensive strains: the Dahl Salt-Sensitive (S) rat, the Spontaneously Hypertensive Rat (SHR), and the Albino Surgery (AS) rat, and the relatively normotensive strains: the Dahl Salt-Resistant (R) rat, the Milan Normotensive Strain (MNS), and the Lewis rat (LEW). These strains were used previously for linkage analysis for blood pressure (BP) in our laboratory. The results provide evidence to suggest that variations in the mitochondrial genome do not account for observed differences in blood pressure between the S and R rats. However, variants were detected among the mitochondrial genomes of the various hypertensive strains, S, SHR, and AS, and also among the normotensive strains R, MNS, and LEW. A total of 115, 114, 106, 106, and 16 variations in mtDNA were observed between the comparisons S versus LEW, S versus MNS, S versus SHR, S versus AS, and SHR versus AS, respectively. Among the 13 genes coding for proteins of the electron transport chain, 8 genes had nonsynonymous variations between S, LEW, MNS, SHR, and AS. The lack of any sequence variants between the mitochondrial genomes of S and R rats provides conclusive evidence that divergence in blood pressure between these two inbred strains is exclusively programmed through their nuclear genomes. The variations detected among the various hypertensive strains provides the basis to construct conplastic strains and further evaluate the effects of these variants on hypertension and associated phenotypes
Renalase Gene Polymorphisms in Patients With Type 2 Diabetes, Hypertension and Stroke
Renalase is a novel, recently identified, flavin adenine dinucleotide-dependent amine oxidase. It is secreted by the kidney and metabolizes circulating catecholamines. Renalase has significant hemodynamic effects, therefore it is likely to participate in the regulation of cardiovascular function.The aim of our study was to investigate the involvement of renalase gene polymorphisms in hypertension in type 2 diabetes patients. A total of 892 patients and 400 controls were genotyped with three SNPs in the renalase gene. The C allele of rs2296545 SNP was associated with hypertension (P < 0.01). For rs2576178 SNP, frequencies in hypertensive patients differed from controls, but not from normotensive patients. For rs10887800 SNP, the differences in the G allele frequencies were observed in hypertensive patients with stroke, with 66% of patients being GG homozygotes. To confirm observed association we later genotyped 130 stroke patients without diabetes. The OR for risk allele was 1.79 (95% CI 1.33–2.41). In conclusion, the renalase gene polymorphism was associated with hypertension in type 2 diabetes patients. The most interesting result is a strong association of the rs10887800 polymorphism with stroke in patients with and without diabetes. The G allele of this polymorphism might thus be useful in identifying diabetes patients at increased risk of stroke
Tobacco smoking, body mass index, hypertension, and kidney cancer risk in central and eastern Europe
In a case–control study of kidney cancer in four central European countries, with 1097 incident cases and 1476 controls, we found an increased risk for self-reported hypertension and for obesity. Additional unknown risk factors are likely to be responsible for the high rates of kidney cancer in this region
Preclinical Development of an In Vivo BCG Challenge Model for Testing Candidate TB Vaccine Efficacy
There is an urgent need for an immunological correlate of protection against tuberculosis (TB) with which to evaluate candidate TB vaccines in clinical trials. Development of a human challenge model of Mycobacterium tuberculosis (M.tb) could facilitate the detection of such correlate(s). Here we propose a novel in vivo Bacille Calmette-Guérin (BCG) challenge model using BCG immunization as a surrogate for M.tb infection. Culture and quantitative PCR methods have been developed to quantify BCG in the skin, using the mouse ear as a surrogate for human skin. Candidate TB vaccines have been evaluated for their ability to protect against a BCG skin challenge, using this model, and the results indicate that protection against a BCG skin challenge is predictive of BCG vaccine efficacy against aerosol M.tb challenge. Translation of these findings to a human BCG challenge model could enable more rapid assessment and down selection of candidate TB vaccines and ultimately the identification of an immune correlate of protection
Carotid Baroreflex Activation: Past, Present, and Future
Electrical activation of the carotid baroreceptor system is an attractive therapy for the treatment of resistant hypertension. In the past, several attempts were made to directly activate the baroreceptor system in humans, but the method had to be restricted to a few selected patients. Adverse effects, the need for better electrical devices and better surgical techniques, and the lack of knowledge about long-term effects has greatly hampered developments in this area for many years. Recently, a new and promising device was evaluated in a multicenter feasibility trial, which showed a clinically and statistically significant reduction in office systolic blood pressure (>20 mm Hg). This reduction could be sustained for at least 2 years with an acceptable safety profile. In the future, this new device may stimulate further application of electrical activation of the carotid baroreflex in treatment-resistant hypertension
- …
