647 research outputs found
New perturbative solutions of the Kerr-Newman dilatonic black hole field equations
This work describes new perturbative solutions to the classical,
four-dimensional Kerr--Newman dilaton black hole field equations. Our solutions
do not require the black hole to be slowly rotating. The unperturbed solution
is taken to be the ordinary Kerr solution, and the perturbation parameter is
effectively the square of the charge-to-mass ratio of the
Kerr--Newman black hole. We have uncovered a new, exact conjugation (mirror)
symmetry for the theory, which maps the small coupling sector to the strong
coupling sector (). We also calculate the gyromagnetic ratio of
the black hole.Comment: Revtex, 27 page
M-theory on `toric' G_2 cones and its type II reduction
We analyze a class of conical G_2 metrics admitting two commuting isometries,
together with a certain one-parameter family of G_2 deformations which
preserves these symmetries. Upon using recent results of Calderbank and
Pedersen, we write down the explicit G_2 metric for the most general member of
this family and extract the IIA reduction of M-theory on such backgrounds, as
well as its type IIB dual. By studying the asymptotics of type II fields around
the relevant loci, we confirm the interpretation of such backgrounds in terms
of localized IIA 6-branes and delocalized IIB 5-branes. In particular, we find
explicit, general expressions for the string coupling and R-R/NS-NS forms in
the vicinity of these objects. Our solutions contain and generalize the field
configurations relevant for certain models considered in recent work of Acharya
and Witten.Comment: 45 pages, references adde
Detection of Gravitational Redshift on the Solar Disk by Using Iodine-Cell Technique
With an aim to examine whether the predicted solar gravitational redshift can
be observationally confirmed under the influence of the convective Doppler
shift due to granular motions, we attempted measuring the absolute spectral
line-shifts on a large number of points over the solar disk based on an
extensive set of 5188-5212A region spectra taken through an iodine-cell with
the Solar Domeless Telescope at Hida Observatory. The resulting heliocentric
line shifts at the meridian line (where no rotational shift exists), which were
derived by finding the best-fit parameterized model spectrum with the observed
spectrum and corrected for the earth's motion, turned out to be weakly
position-dependent as ~ +400 m/s near the disk center and increasing toward the
limb up to ~ +600 m/s (both with a standard deviation of sigma ~ 100 m/s).
Interestingly, this trend tends to disappear when the convectiveshift due to
granular motions (~-300 m/s at the disk center and increasing toward the limb;
simulated based on the two-component model along with the empirical
center-to-limb variation) is subtracted, finally resulting in the averaged
shift of 698 m/s (sigma = 113 m/s). Considering the ambiguities involved in the
absolute wavelength calibration or in the correction due to convective Doppler
shifts (at least several tens m/s, or more likely up to <~100 m/s), we may
regard that this value is well consistent with the expected gravitational
redshift of 633 m/s.Comment: 28 pages, 12 figures, electronic materials as ancillary data (table3,
table 4, ReadMe); accepted for publication in Solar Physic
Bessel Process and Conformal Quantum Mechanics
Different aspects of the connection between the Bessel process and the
conformal quantum mechanics (CQM) are discussed. The meaning of the possible
generalizations of both models is investigated with respect to the other model,
including self adjoint extension of the CQM. Some other generalizations such as
the Bessel process in the wide sense and radial Ornstein- Uhlenbeck process are
discussed with respect to the underlying conformal group structure.Comment: 28 Page
Topological String Amplitudes, Complete Intersection Calabi-Yau Spaces and Threshold Corrections
We present the most complete list of mirror pairs of Calabi-Yau complete
intersections in toric ambient varieties and develop the methods to solve the
topological string and to calculate higher genus amplitudes on these compact
Calabi-Yau spaces. These symplectic invariants are used to remove redundancies
in examples. The construction of the B-model propagators leads to compatibility
conditions, which constrain multi-parameter mirror maps. For K3 fibered
Calabi-Yau spaces without reducible fibers we find closed formulas for all
genus contributions in the fiber direction from the geometry of the fibration.
If the heterotic dual to this geometry is known, the higher genus invariants
can be identified with the degeneracies of BPS states contributing to
gravitational threshold corrections and all genus checks on string duality in
the perturbative regime are accomplished. We find, however, that the BPS
degeneracies do not uniquely fix the non-perturbative completion of the
heterotic string. For these geometries we can write the topological partition
function in terms of the Donaldson-Thomas invariants and we perform a
non-trivial check of S-duality in topological strings. We further investigate
transitions via collapsing D5 del Pezzo surfaces and the occurrence of free Z2
quotients that lead to a new class of heterotic duals.Comment: 117 pages, 1 Postscript figur
Dynamic nuclear polarization and spin-diffusion in non-conducting solids
There has been much renewed interest in dynamic nuclear polarization (DNP),
particularly in the context of solid state biomolecular NMR and more recently
dissolution DNP techniques for liquids. This paper reviews the role of spin
diffusion in polarizing nuclear spins and discusses the role of the spin
diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in
a special issue that is being published in connection with the DNP Symposium
help in Nottingham in August 200
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
