7,006 research outputs found
Transport Properties of the Infinite Dimensional Hubbard Model
Results for the optical conductivity and resistivity of the Hubbard model in
infinite spatial dimensions are presented. At half filling we observe a gradual
crossover from a normal Fermi-liquid with a Drude peak at in the
optical conductivity to an insulator as a function of for temperatures
above the antiferromagnetic phase transition. When doped, the ``insulator''
becomes a Fermi-liquid with a corresponding temperature dependence of the
optical conductivity and resistivity. We find a -coefficient in the low
temperature resistivity which suggests that the carriers in the system acquire
a considerable mass-enhancement due to the strong local correlations. At high
temperatures, a crossover into a semi-metallic regime takes place.Comment: 14 page
Scanning tunneling microscopy and kinetic Monte Carlo investigation of Cesium superlattices on Ag(111)
Cesium adsorption structures on Ag(111) were characterized in a
low-temperature scanning tunneling microscopy experiment. At low coverages,
atomic resolution of individual Cs atoms is occasionally suppressed in regions
of an otherwise hexagonally ordered adsorbate film on terraces. Close to step
edges Cs atoms appear as elongated protrusions along the step edge direction.
At higher coverages, Cs superstructures with atomically resolved hexagonal
lattices are observed. Kinetic Monte Carlo simulations model the observed
adsorbate structures on a qualitative level.Comment: 8 pages, 7 figure
Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications
Methods for estimating the case fatality ratio for a novel, emerging infectious disease.
During the course of an epidemic of a potentially fatal disease, it is important that the case fatality ratio be well estimated. The authors propose a novel method for doing so based on the Kaplan-Meier survival procedure, jointly considering two outcomes (death and recovery), and evaluate its performance by using data from the 2003 epidemic of severe acute respiratory syndrome in Hong Kong, People's Republic of China. They compare this estimate obtained at various points in the epidemic with the case fatality ratio eventually observed; with two commonly quoted, naïve estimates derived from cumulative incidence and mortality statistics at single time points; and with estimates in which a parametric mixture model is used. They demonstrate the importance of patient characteristics regarding outcome by analyzing subgroups defined by age at admission to the hospital
From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model
The magnetic properties of the two-channel periodic Anderson model for
uranium ions, comprised of a quadrupolar and a magnetic doublet are
investigated through the crossover from the mixed-valent to the stable moment
regime using dynamical mean field theory. In the mixed-valent regime
ferromagnetism is found for low carrier concentration on a hyper-cubic lattice.
The Kondo regime is governed by band magnetism with small effective moments and
an ordering vector \q close to the perfect nesting vector. In the stable
moment regime nearest neighbour anti-ferromagnetism dominates for less than
half band filling and a spin density wave transition for larger than half
filling. is governed by the renormalized RKKY energy scale \mu_{eff}^2
^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure
Two-Channel Kondo Lattice: An Incoherent Metal
The two-channel Kondo lattice model is examined with a Quantum Monte Carlo
simulation in the limit of infinite dimensions. We find non-fermi-liquid
behavior at low temperatures including a finite low-temperature single-particle
scattering rate, the lack of a fermi edge and Drude weight. However, the
low-energy density of electronic states is finite. Thus, we identify this
system as an incoherent metal. We discuss the relevance of our results for
concentrated heavy fermion metals with non-Fermi-Liquid behavior.Comment: LaTex, 5 pages, 3 Postscript files. Revision - in reference 5 and
6(a
Application of a magnetic suspension balance to the oxidation study of the zirconium based alloys under high pressurewater vapour
International audienceThe fuel claddings in the Pressurised Water Reactor are corroded in water at high temperature and high pressure. The technical device ableto follow continuously the corrosion rate in conditions close to this medium does not yet exist. That is the reason why a high pressure thermogravimetric installation based on magnetic suspension has been designed to study in situ the oxidation kinetics of the zirconium based alloys under water vapour until 50 bars of pressure at 415°C. The accuracy of measurements is about 5•10–5 g under 2 bars, and 10–4 g under 50 bars. The reproducibility of measurements was verified and the deviation regarding post test weighing at room temperature is around 5•10–5 g what is clearly satisfying. Finally, the results presented in this work allow validating the high pressure thermogravimetric measurements obtained with this magnetic suspension device
Phase Diagram of the Two-Channel Kondo Lattice
The phase diagram of the two-channel Kondo lattice model is examined with a
Quantum Monte Carlo simulation in the limit of infinite dimensions.
Commensurate (and incommensurate) antiferromagnetic and superconducting states
are found. The antiferromagnetic transition is very weak and continuous;
whereas the superconducting transition is discontinuous to an odd-frequency
channel-singlet and spin-singlet pairing state.Comment: 5 pages, LaTeX and 4 PS figures (see also cond-mat/9609146 and
cond-mat/9605109
Multicanonical Hybrid Monte Carlo: Boosting Simulations of Compact QED
We demonstrate that substantial progress can be achieved in the study of the
phase structure of 4-dimensional compact QED by a joint use of hybrid Monte
Carlo and multicanonical algorithms, through an efficient parallel
implementation. This is borne out by the observation of considerable speedup of
tunnelling between the metastable states, close to the phase transition, on the
Wilson line. We estimate that the creation of adequate samples (with order 100
flip-flops) becomes a matter of half a year's runtime at 2 Gflops sustained
performance for lattices of size up to 24^4.Comment: 15 pages, 8 figure
The Hubbard Model at Infinite Dimensions: Thermodynamic and Transport Properties
We present results on thermodynamic quantities, resistivity and optical
conductivity for the Hubbard model on a simple hypercubic lattice in infinite
dimensions. Our results for the paramagnetic phase display the features
expected from an intuitive analysis of the one-particle spectra and
substantiate the similarity of the physics of the Hubbard model to those of
heavy fermion systems. The calculations were performed using an approximate
solution to the single-impurity Anderson model, which is the key quantity
entering the solution of the Hubbard model in this limit. To establish the
quality of this approximation we compare its results, together with those
obtained from two other widely used methods, to essentially exact quantum Monte
Carlo results.Comment: 29 pages, 16 figure
- …
