212 research outputs found
Layer degradation triggers an abrupt structural transition in multiplex networks
Network robustness is a central point in network science, both from a
theoretical and a practical point of view. In this paper, we show that layer
degradation, understood as the continuous or discrete loss of links' weight,
triggers a structural transition revealed by an abrupt change in the algebraic
connectivity of the graph. Unlike traditional single layer networks, multiplex
networks exist in two phases, one in which the system is protected from link
failures in some of its layers and one in which all the system senses the
failure happening in one single layer. We also give the exact critical value of
the weight of the intra-layer links at which the transition occurs for
continuous layer degradation and its relation to the value of the coupling
between layers. This relation allows us to reveal the connection between the
transition observed under layer degradation and the one observed under the
variation of the coupling between layers.Comment: 8 pages, and 8 figures in Revtex style. Submitted for publicatio
Disease Localization in Multilayer Networks
We present a continuous formulation of epidemic spreading on multilayer
networks using a tensorial representation, extending the models of monoplex
networks to this context. We derive analytical expressions for the epidemic
threshold of the SIS and SIR dynamics, as well as upper and lower bounds for
the disease prevalence in the steady state for the SIS scenario. Using the
quasi-stationary state method we numerically show the existence of disease
localization and the emergence of two or more susceptibility peaks, which are
characterized analytically and numerically through the inverse participation
ratio. Furthermore, when mapping the critical dynamics to an eigenvalue
problem, we observe a characteristic transition in the eigenvalue spectra of
the supra-contact tensor as a function of the ratio of two spreading rates: if
the rate at which the disease spreads within a layer is comparable to the
spreading rate across layers, the individual spectra of each layer merge with
the coupling between layers. Finally, we verified the barrier effect, i.e., for
three-layer configuration, when the layer with the largest eigenvalue is
located at the center of the line, it can effectively act as a barrier to the
disease. The formalism introduced here provides a unifying mathematical
approach to disease contagion in multiplex systems opening new possibilities
for the study of spreading processes.Comment: Revised version. 25 pages and 18 figure
On degree-degree correlations in multilayer networks
We propose a generalization of the concept of assortativity based on the
tensorial representation of multilayer networks, covering the definitions given
in terms of Pearson and Spearman coefficients. Our approach can also be applied
to weighted networks and provides information about correlations considering
pairs of layers. By analyzing the multilayer representation of the airport
transportation network, we show that contrasting results are obtained when the
layers are analyzed independently or as an interconnected system. Finally, we
study the impact of the level of assortativity and heterogeneity between layers
on the spreading of diseases. Our results highlight the need of studying
degree-degree correlations on multilayer systems, instead of on aggregated
networks.Comment: 8 pages, 3 figure
A polynomial eigenvalue approach for multiplex networks
We explore the block nature of the matrix representation of multiplex
networks, introducing a new formalism to deal with its spectral properties as a
function of the inter-layer coupling parameter. This approach allows us to
derive interesting results based on an interpretation of the traditional
eigenvalue problem. More specifically, we reduce the dimensionality of our
matrices but increase the power of the characteristic polynomial, i.e, a
polynomial eigenvalue problem. Such an approach may sound counterintuitive at
first glance, but it allows us to relate the quadratic problem for a 2-Layer
multiplex system with the spectra of the aggregated network and to derive
bounds for the spectra, among many other interesting analytical insights.
Furthermore, it also permits to directly obtain analytical and numerical
insights on the eigenvalue behavior as a function of the coupling between
layers. Our study includes the supra-adjacency, supra-Laplacian, and the
probability transition matrices, which enable us to put our results under the
perspective of structural phases in multiplex networks. We believe that this
formalism and the results reported will make it possible to derive new results
for multiplex networks in the future.Comment: 15 pages including figures. Submitted for publicatio
Structure of Triadic Relations in Multiplex Networks
Recent advances in the study of networked systems have highlighted that our
interconnected world is composed of networks that are coupled to each other
through different "layers" that each represent one of many possible subsystems
or types of interactions. Nevertheless, it is traditional to aggregate
multilayer networks into a single weighted network in order to take advantage
of existing tools. This is admittedly convenient, but it is also extremely
problematic, as important information can be lost as a result. It is therefore
important to develop multilayer generalizations of network concepts. In this
paper, we analyze triadic relations and generalize the idea of transitivity to
multiplex networks. By focusing on triadic relations, which yield the simplest
type of transitivity, we generalize the concept and computation of clustering
coefficients to multiplex networks. We show how the layered structure of such
networks introduces a new degree of freedom that has a fundamental effect on
transitivity. We compute multiplex clustering coefficients for several real
multiplex networks and illustrate why one must take great care when
generalizing standard network concepts to multiplex networks. We also derive
analytical expressions for our clustering coefficients for ensemble averages of
networks in a family of random multiplex networks. Our analysis illustrates
that social networks have a strong tendency to promote redundancy by closing
triads at every layer and that they thereby have a different type of multiplex
transitivity from transportation networks, which do not exhibit such a
tendency. These insights are invisible if one only studies aggregated networks.Comment: Main text + Supplementary Material included in a single file.
Published in New Journal of Physic
Mathematical Formulation of Multi-Layer Networks
A network representation is useful for describing the structure of a large
variety of complex systems. However, most real and engineered systems have
multiple subsystems and layers of connectivity, and the data produced by such
systems is very rich. Achieving a deep understanding of such systems
necessitates generalizing "traditional" network theory, and the newfound deluge
of data now makes it possible to test increasingly general frameworks for the
study of networks. In particular, although adjacency matrices are useful to
describe traditional single-layer networks, such a representation is
insufficient for the analysis and description of multiplex and time-dependent
networks. One must therefore develop a more general mathematical framework to
cope with the challenges posed by multi-layer complex systems. In this paper,
we introduce a tensorial framework to study multi-layer networks, and we
discuss the generalization of several important network descriptors and
dynamical processes --including degree centrality, clustering coefficients,
eigenvector centrality, modularity, Von Neumann entropy, and diffusion-- for
this framework. We examine the impact of different choices in constructing
these generalizations, and we illustrate how to obtain known results for the
special cases of single-layer and multiplex networks. Our tensorial approach
will be helpful for tackling pressing problems in multi-layer complex systems,
such as inferring who is influencing whom (and by which media) in multichannel
social networks and developing routing techniques for multimodal transportation
systems.Comment: 15 pages, 5 figure
L’esperienza del corso di formazione sul Liceo Matematico: il caso del linguaggio ed epistemologia delle scienze umane e natural
Epidemics in partially overlapped multiplex networks
Many real networks exhibit a layered structure in which links in each layer
reflect the function of nodes on different environments. These multiple types
of links are usually represented by a multiplex network in which each layer has
a different topology. In real-world networks, however, not all nodes are
present on every layer. To generate a more realistic scenario, we use a
generalized multiplex network and assume that only a fraction of the nodes
are shared by the layers. We develop a theoretical framework for a branching
process to describe the spread of an epidemic on these partially overlapped
multiplex networks. This allows us to obtain the fraction of infected
individuals as a function of the effective probability that the disease will be
transmitted . We also theoretically determine the dependence of the epidemic
threshold on the fraction of shared nodes in a system composed of two
layers. We find that in the limit of the threshold is dominated by
the layer with the smaller isolated threshold. Although a system of two
completely isolated networks is nearly indistinguishable from a system of two
networks that share just a few nodes, we find that the presence of these few
shared nodes causes the epidemic threshold of the isolated network with the
lower propagating capacity to change discontinuously and to acquire the
threshold of the other network.Comment: 13 pages, 4 figure
- …
