212 research outputs found

    Layer degradation triggers an abrupt structural transition in multiplex networks

    Get PDF
    Network robustness is a central point in network science, both from a theoretical and a practical point of view. In this paper, we show that layer degradation, understood as the continuous or discrete loss of links' weight, triggers a structural transition revealed by an abrupt change in the algebraic connectivity of the graph. Unlike traditional single layer networks, multiplex networks exist in two phases, one in which the system is protected from link failures in some of its layers and one in which all the system senses the failure happening in one single layer. We also give the exact critical value of the weight of the intra-layer links at which the transition occurs for continuous layer degradation and its relation to the value of the coupling between layers. This relation allows us to reveal the connection between the transition observed under layer degradation and the one observed under the variation of the coupling between layers.Comment: 8 pages, and 8 figures in Revtex style. Submitted for publicatio

    Disease Localization in Multilayer Networks

    Get PDF
    We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial representation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold of the SIS and SIR dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasi-stationary state method we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks, which are characterized analytically and numerically through the inverse participation ratio. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of two spreading rates: if the rate at which the disease spreads within a layer is comparable to the spreading rate across layers, the individual spectra of each layer merge with the coupling between layers. Finally, we verified the barrier effect, i.e., for three-layer configuration, when the layer with the largest eigenvalue is located at the center of the line, it can effectively act as a barrier to the disease. The formalism introduced here provides a unifying mathematical approach to disease contagion in multiplex systems opening new possibilities for the study of spreading processes.Comment: Revised version. 25 pages and 18 figure

    On degree-degree correlations in multilayer networks

    Get PDF
    We propose a generalization of the concept of assortativity based on the tensorial representation of multilayer networks, covering the definitions given in terms of Pearson and Spearman coefficients. Our approach can also be applied to weighted networks and provides information about correlations considering pairs of layers. By analyzing the multilayer representation of the airport transportation network, we show that contrasting results are obtained when the layers are analyzed independently or as an interconnected system. Finally, we study the impact of the level of assortativity and heterogeneity between layers on the spreading of diseases. Our results highlight the need of studying degree-degree correlations on multilayer systems, instead of on aggregated networks.Comment: 8 pages, 3 figure

    A polynomial eigenvalue approach for multiplex networks

    Get PDF
    We explore the block nature of the matrix representation of multiplex networks, introducing a new formalism to deal with its spectral properties as a function of the inter-layer coupling parameter. This approach allows us to derive interesting results based on an interpretation of the traditional eigenvalue problem. More specifically, we reduce the dimensionality of our matrices but increase the power of the characteristic polynomial, i.e, a polynomial eigenvalue problem. Such an approach may sound counterintuitive at first glance, but it allows us to relate the quadratic problem for a 2-Layer multiplex system with the spectra of the aggregated network and to derive bounds for the spectra, among many other interesting analytical insights. Furthermore, it also permits to directly obtain analytical and numerical insights on the eigenvalue behavior as a function of the coupling between layers. Our study includes the supra-adjacency, supra-Laplacian, and the probability transition matrices, which enable us to put our results under the perspective of structural phases in multiplex networks. We believe that this formalism and the results reported will make it possible to derive new results for multiplex networks in the future.Comment: 15 pages including figures. Submitted for publicatio

    Structure of Triadic Relations in Multiplex Networks

    Get PDF
    Recent advances in the study of networked systems have highlighted that our interconnected world is composed of networks that are coupled to each other through different "layers" that each represent one of many possible subsystems or types of interactions. Nevertheless, it is traditional to aggregate multilayer networks into a single weighted network in order to take advantage of existing tools. This is admittedly convenient, but it is also extremely problematic, as important information can be lost as a result. It is therefore important to develop multilayer generalizations of network concepts. In this paper, we analyze triadic relations and generalize the idea of transitivity to multiplex networks. By focusing on triadic relations, which yield the simplest type of transitivity, we generalize the concept and computation of clustering coefficients to multiplex networks. We show how the layered structure of such networks introduces a new degree of freedom that has a fundamental effect on transitivity. We compute multiplex clustering coefficients for several real multiplex networks and illustrate why one must take great care when generalizing standard network concepts to multiplex networks. We also derive analytical expressions for our clustering coefficients for ensemble averages of networks in a family of random multiplex networks. Our analysis illustrates that social networks have a strong tendency to promote redundancy by closing triads at every layer and that they thereby have a different type of multiplex transitivity from transportation networks, which do not exhibit such a tendency. These insights are invisible if one only studies aggregated networks.Comment: Main text + Supplementary Material included in a single file. Published in New Journal of Physic

    Mathematical Formulation of Multi-Layer Networks

    Full text link
    A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems is very rich. Achieving a deep understanding of such systems necessitates generalizing "traditional" network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multi-layer complex systems. In this paper, we introduce a tensorial framework to study multi-layer networks, and we discuss the generalization of several important network descriptors and dynamical processes --including degree centrality, clustering coefficients, eigenvector centrality, modularity, Von Neumann entropy, and diffusion-- for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multi-layer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.Comment: 15 pages, 5 figure

    Epidemics in partially overlapped multiplex networks

    Get PDF
    Many real networks exhibit a layered structure in which links in each layer reflect the function of nodes on different environments. These multiple types of links are usually represented by a multiplex network in which each layer has a different topology. In real-world networks, however, not all nodes are present on every layer. To generate a more realistic scenario, we use a generalized multiplex network and assume that only a fraction qq of the nodes are shared by the layers. We develop a theoretical framework for a branching process to describe the spread of an epidemic on these partially overlapped multiplex networks. This allows us to obtain the fraction of infected individuals as a function of the effective probability that the disease will be transmitted TT. We also theoretically determine the dependence of the epidemic threshold on the fraction q>0q > 0 of shared nodes in a system composed of two layers. We find that in the limit of q0q \to 0 the threshold is dominated by the layer with the smaller isolated threshold. Although a system of two completely isolated networks is nearly indistinguishable from a system of two networks that share just a few nodes, we find that the presence of these few shared nodes causes the epidemic threshold of the isolated network with the lower propagating capacity to change discontinuously and to acquire the threshold of the other network.Comment: 13 pages, 4 figure
    corecore