835 research outputs found
Holonomies of gauge fields in twistor space 5: amplitudes of gluons and massive scalars
Scattering amplitudes of gluons coupled with a pair of massive scalars,
so-called massive scalar amplitudes, provide the simplest yet physically useful
examples of massive amplitudes. In this paper we construct an S-matrix
functional for the massive scalar amplitudes in a recently developed holonomy
formalism in supertwistor space. From the S-matrix functional we derive ultra
helicity violating (UHV), as well as next-to-UHV (NUHV), massive scalar
amplitudes at tree level in a form that agrees with previously known results.
We also obtain recursive expressions for non-UHV tree amplitudes in general.
These results will open up a new avenue to the study of phenomenology in the
spinor-helicity formalism.Comment: 32 pages; v2. minor revisions, published versio
Inflation, moduli (de)stabilization and supersymmetry breaking
We study the cosmological inflation from the viewpoint of the moduli
stabilization. We study the scenario that the superpotential has a large value
during the inflation era enough to stabilize moduli, but it is small in the
true vacuum. This scenario is discussed by using a simple model, one type of
hybrid models.Comment: 17 pages, 7 figure
Supersymmetry and R-symmetry breaking in models with non-canonical Kahler potential
We analyze several aspects of R-symmetry and supersymmetry breaking in
generalized O'Raifeartaigh models with non-canonical Kahler potential. Some
conditions on the Kahler potential are derived in order for the
non-supersymmetric vacua to be degenerate. We calculate the Coleman-Weinberg
(CW) effective potential for general quiral non-linear sigma models and then
study the 1-loop quantum corrections to the pseudo-moduli space. For
R-symmetric models, the quadratic dependence of the CW potential with the
ultraviolet cutoff scale disappears. We also show that the conditions for
R-symmetry breaking are independent of this scale and remain unchanged with
respect to those of canonical models. This is, R-symmetry can be broken when
generic R-charge assignments to the fields are made, while it remains unbroken
when only fields with R-charge 0 and 2 are present. We further show that these
models can keep the runaway behavior of their canonical counterparts and also
new runaway directions can be induced. Due to the runaway directions, the
non-supersymmetric vacua is metastable.Comment: 19 pages, revised version with minor changes, references added,
published in JHE
Mean Field Phase Diagram of SU(2)xSU(2) Lattice Higgs-Yukawa Model at Finite Lambda
The phase diagram of an SU(2)_L x SU(2)_R lattice Higgs-Yukawa model with
finite lambda is constructed using mean field theory. The phase diagram bears a
superficial resemblance to that for infinite lambda, however as lambda is
decreased the paramagnetic region shrinks in size. For small lambda the phase
transitions remain second order, and no new first order transitions are seen.Comment: 9 pages, 3 postscript figures, RevTex. To appear in PR
Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study
Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists
Outgassing of Ordinary Chondritic Material and Some of its Implications for the Chemistry of Asteroids, Planets, and Satellites
We used chemical equilibrium calculations to model thermal outgassing of
ordinary chondritic material as a function of temperature, pressure, and bulk
compositions and use our results to discuss outgassing on asteroids and the
early Earth. The calculations include ~1,000 solids and gases of the elements
Al, C, Ca, Cl, Co, Cr, F, Fe, H, K, Mg, Mn, N, Na, Ni, O, P, S, Si, and Ti. The
major outgassed volatiles from ordinary chondritic material are CH4, H2, H2O,
N2, and NH3(the latter at conditions where hydrous minerals form). Contrary to
widely held assumptions, CO is never the major C-bearing gas during ordinary
chondrite metamorphism. The calculated oxygen fugacity (partial pressure) of
ordinary chondritic material is close to that of the quartz-fayalite-iron (QFI)
buffer. Our results are insensitive to variable total pressure, variable
volatile element abundances, and kinetic inhibition of C and N dissolution in
Fe metal. Our results predict that Earth's early atmosphere contained CH4, H2,
H2O, N2, and NH3; similar to that used in Miller-Urey synthesis of organic
compounds.Comment: 72 pages, 17 figures, 3 tables; submitted to Icaru
Processing of Thionin Precursors in Barley Leaves by a Vacuolar Proteinase
Thionins are synthesized as precursors with a signal peptide and a long C-terminal acidic peptide that is post-translationally processed. A fusion protein including the maltose-binding protein from Eschrrichia coli (MalE), thionin DG3 froin barley leaves, and its acidic C-terminal peptide has been used to obtain antibodies that recognize both domains of the precursor. In barley leaf sections. mature thionins accuinulated in the vacuolar content, while the acidic peptide was not detected in any cell fraction. Brefeldin A and inonensin inhibited processing of the precursor but its export from the microsomal fraction was not inhibited. Both purified vacuoles aiid an acid (pH 5.5) extract from leaves processed the fusion protein into a MalE-thionin and an acidic peptide fragment. A 70-kDa proteinase that effected this cleavage was purified froin the acid extract. Processing of the fusion protein by both lysed vacuoles and the purified proteinase was inhibited by Zn2+ and by Cu2+, but not by inhibitors of the previously described vacuolar processing thiol or aspartic proteinases. In vivo processing of the thionin precursor in leaf sections was also inhibited by Zn+, and Cu2+, Variants of the fusion protein with altered processing sites that represented thme of thionin precursors from different taxa were readily processed by the proteinase, whereas changing the polarity of either the C-terminal or N-terminal residues of the processing site prevented cleavage by the proteinase
Strong coupling, discrete symmetry and flavour
We show how two principles - strong coupling and discrete symmetry - can work
together to generate the flavour structure of the Standard Model. We propose
that in the UV the full theory has a discrete flavour symmetry, typically only
associated with tribimaximal mixing in the neutrino sector. Hierarchies in the
particle masses and mixing matrices then emerge from multiple strongly coupled
sectors that break this symmetry. This allows for a realistic flavour
structure, even in models built around an underlying grand unified theory. We
use two different techniques to understand the strongly coupled physics:
confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both
approaches yield equivalent results and can be represented in a clear,
graphical way where the flavour symmetry is realised geometrically.Comment: 31 pages, 5 figures, updated references and figure
High-resolution net and gross biological production during a Celtic Sea spring bloom
Shelf seas represent only 10% of the ocean area, but support up to 30% of all oceanic primary production. There are few measurements of shelf-sea biological production at high spatial and temporal resolution in such heterogeneous and physically dynamic systems. Here, we use dissolved oxygen-to-argon (O2/Ar) ratios and oxygen triple isotopes (16O, 17O, 18O) to estimate net and gross biological production in the Celtic Sea during spring 2015. O2/Ar ratios were measured continuously using a shipboard membrane inlet mass spectrometer (MIMS). Additional discrete water samples from CTD hydrocasts were used to measure O2/Ar depth profiles and the δ(17O) and δ(18O) values of dissolved O2. These high-resolution data were combined with wind-speed based gas exchange parameterisations to calculate biologically driven air-sea oxygen fluxes. After correction for disequilibrium terms and diapycnal diffusion, these fluxes yielded estimates of net community (N(O2/Ar)) and gross O2 production (G(17O)). N(O2/Ar) was spatially heterogeneous and showed predominantly autotrophic conditions, with an average of (33±41) mmol m-2 d-1. G(17O) showed high variability between 0 and 424 mmol m-2 d-1. The ratio of N(O2/Ar) to G(17O), ƒ(O2), was (0.18±0.03) corresponding to 0.34±0.06 in carbon equivalents. We also observed rapid temporal changes in N(O2/Ar), e.g. an increase of 80 mmol m-2 d-1 in less than 6 hours during the spring bloom, highlighting the importance of high-resolution biological production measurements. Such measurements will help reconcile the differences between satellite and in situ productivity observations, and improve our understanding of the biological carbon pump
Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams
- …
